嗨,欢迎来到兆亿微波官方商城!
服务热线: 010-82788689  010-62975458
购物车图片 购物车 ( )
全部商品分类
据兆亿微波了解,中国,北京 – Analog Devices, Inc. (ADI)今天推出一款16通道混合信号前端(MxFE)数字转换器,可用于航空航天和防务应用,包括相控阵雷达和地面卫星通信(SATCOM)。这款新型的数字转换器包含四个AD9081或四个AD9082软件定义的直接RF采样收发器。该产品旨在通过提供参考RF信号链、软件架构、电源设计和应用示例代码来帮助客户加速开发进程。  ADI还推出了一款数字转换处理卡与之配合使用,方便执行系统级校准算法和演示上电相位的确定性。ADQUADMXFE1EBZ 16通道混合信号前端数字转换器主要特性: ●     16个RF接收(Rx)通道(32个数字Rx通道)●     16个RF发射(Tx)通道(32个数字Tx通道)●     提供MATLAB®应用脚本形式的特定应用示例和GUI●     灵活的时钟分配 ADQUADMXFE-CAL数字转换卡主要特性: ●     提供单独的相邻通道回送和组合通道回送选项●     通过SMA连接器提供组合Tx和Rx通道输出●     板载对数功率检波器,具备AD5592R数字转换功能报价与供货产品说明供货起始单价封装ADQUADMXFE1EBZQuad-MxFE(第二奈奎斯特区Rx操作,采用AD9081)现已供货$12,000箱装,配有电源和一些相关线缆ADQUADMXFE2EBZQuad-MxFE(第一奈奎斯特区Rx操作,采用AD9081)2021年6月$12,000箱装,配有电源和一些相关线缆ADQUADMXFE3EBZQu...
浏览次数: 2
2021/4/13 14:59:59
毫米波功率放大器是卫星通信系统、多媒体无线系统、高速WLAN和高速无线个人区域网络(WPAN)中的重要器件。本文从GaAs、GaN、InP技术分别综述了近年来国内外对毫米波波段功率放大器芯片的研究情况,介绍了相关的现有产品,并展望了毫米波波段MMIC功放发展的趋势。    一、背景介绍    消费者对无线数据传输速度的需求看似是无止境的。这提高了点与点无线连接的工作频率也为毫米波放大器设计提供了更多的机会。载波频率与数据传输速率的关系如下图所示。随着工作频率的增长,可以使用的器件在减少,而器件和实验设备的成本却很高。    对于毫米波放大器的最大应用是对于移动通信中的点与点连接。在6-40GHz范围的微波点与点连接已经是很成熟的技术。对于毫米波(30GHz)放大器,大约在38GHz的产品已经有很多了。    在60GHz左右的波段很有意义。在美国这是最广泛且灵活的分配,在57GHz到64GHz频带内是可以不注册而使用的。对于60GHz波段通常使用在户外媒体点对点连接、高速WLAN和高速无线个人区域网络(WPAN)。60GHz频段最大的特点是由于氧气的吸收而有较大的大气衰减。这虽然减短了实际的传输距离,但这常常视作减少干扰和频谱在利用的好处。然而,对于高速WLAN/WPAN应用,60GHz的频段是很具吸引力的选择。在这种情况下,潜在产品量会很多,由于所需的性能(如:噪声系数、线性度、发射功率)低于点与点的连接且价格也会比较低。这些因素可以得出这样的结论:这种应用很有可能由高集成度的硅收发机所主导。对于输出低功率、小型化、低价格的MMIC放大器这会起到一定的作用。    60GHz毫米波通信的研发工作正日益活跃起来。该技术面向PC、数字家电等应用,能够实现设备间数Gbps的超高速...
浏览次数: 1
2021/4/13 13:45:42
电子设备中使用着大量各种类型的电子元器件,设备发生故障大多是由于电子元器件失效或损坏引起的。因此怎么正确检测电子元器件就显得尤其重要,这也是电子维修人员必须掌握的技能。小编精选了在电器维修中积累了部分常见电子元器件检测经验和技巧,供大家参考。    1.测整流电桥各脚的极性    万用表置R×1k挡,黑表笔接桥堆的任意引脚,红表笔先后测其余三只脚,如果读数均为无穷大,则黑表笔所接为桥堆的输出正极,如果读数为4~10kΩ,则黑表笔所接引脚为桥堆的输出负极,其余的两引脚为桥堆的交流输入端。    2.判断晶振的好坏    先用万用表(R×10k挡)测晶振两端的电阻值,若为无穷大,说明晶振无短路或漏电;再将试电笔插入市电插孔内,用手指捏住晶振的任一引脚,将另一引脚碰触试电笔顶端的金属部分,若试电笔氖泡发红,说明晶振是好的;若氖泡不亮,则说明晶振损坏。    3.单向晶闸管检测    可用万用表的R×1k或R×100挡测量任意两极之问的正、反向电阻,如果找到一对极的电阻为低阻值(100Ω~lkΩ),则此时黑表笔所接的为控制极,红表笔所接为阴极,另一个极为阳极。晶闸管共有3个PN结,我们可以通过测量PN结正、反向电阻的大小来判别它的好坏。测量控制极(G)与阴极[C)之间的电阻时,如果正、反向电阻均为零或无穷大,表明控制极短路或断路;测量控制极(G)与阳极(A)之间的电阻时,正、反向电阻读数均应很大;测量阳极(A)与阴极(C)之间的电阻时,正、反向电阻都应很大。    4.双向晶闸管的极性识别    双向晶闸管有主电极1、主电极2和控制极,如果用万用表R×1k挡测量两个主电极之间...
浏览次数: 4
2021/4/12 14:41:07
微波功率放大器主要分为真空和固态两种形式。基于真空器件的功率放大器,曾在军事装备的发展史上扮演过重要角色,而且由于其功率与效率的优势,现在仍广泛应用于雷达、通信、电子对抗等领域。后随着GaAs晶体管的问世,固态器件开始在低频段替代真空管,尤其是随着GaN,SiC等新材料的应用,固态器件的竞争力已大幅提高[1]。本文将对两种器件以及它们竞争与融合的产物——微波功率模块(MPM)的发展情况作一介绍与分析,以充分了解国际先进水平,也对促进国内技术的发展有所助益。    1.   真空放大器件    跟固态器件相比,真空器件的主要优点是工作频率高、频带宽、功率大、效率高,主要缺点是体积和质量均较大。真空器件主要包括行波管、磁控管和速调管,它们具有各自的优势,应用于不同的领域。其中,行波管主要优势为频带宽,速调管主要优势为功率大,磁控管主要优势为效率高。行波管应用最为广泛,因此本文主要以行波管为例介绍真空器件。    1.1   历史发展    真空电子器件的发展可追溯到二战期间。1963年,TWTA技术在设计变革方面取得了实质性进展,提高了射频输出的功率和效率,封装也更加紧凑。1973年,欧洲首个行波管放大器研制成功。然而,到了20世纪70年代中期,半导体器件异军突起,真空器件投入大幅减少,其发展遭遇极大困难。直到21世纪初,美国三军特设委员会详细讨论了功率器件的历史、现状和发展,指出真空器件和固态器件之间的平衡投资战略。2015年,美国先进计划研究局DARPA分别启动了INVEST,HAVOC计划,支持真空功率器件的发展和不断增长的军事系统需要,特别是毫米波及THz行波管[2-4]。当前真空器件已取得长足进步,在雷达、通信、电子战等系统中应用广泛。  ...
浏览次数: 3
2021/4/7 14:40:21
通常,我们在采购电子元器件的时候,会遇到各种参数,当你想到“噪声” ,通常你会认为噪声来自外面的某个地方。这话也没错,但是有一部分噪声是由组件(DUT)本身产生的。除非设备工作在绝对零度(摄氏零下273度) ,否则物体本身总会发出这样的噪声。在大多数情况下,我们只是忽略这种噪声,主要是因为噪声强度不大,不足以干扰正常的信号。  但有些情况下,我们不能忽略这些噪声产生的组件本身。对于这种情况,我们制定了一个规格来测量 、管理、 控制这种类型的噪声,这个指标被称为“噪声系数”。物理噪声系数和噪声系数指标相同,唯一的区别是噪声系数(Noise Figure)是对数标度(分贝) ,噪声因子(Noise Figure)是线性标度。  现在让我们来看看噪音数字的一些细节。假设你有一个虚构的设备,它的增益为1,这意味着它不能放大任何进入设备的信号,并且它完全受到任何外部噪声源的保护。假设您输入如左图所示的输出,并得到如右图所示的输出。你觉得有什么不同吗?是的...... 我没有看到任何不同的大小的信号峰值,这是可以理解的,因为这是一个设备增益1。那噪底呢?你会注意到输入的噪底和输出的噪底之间有很大的区别。为什么会变成这样?既然我们假设这是一个完全不受外界噪声干扰的理想设备,我们唯一能想到的可能性就是噪声是由设备本身(Device Under Test)本身产生的。噪声系数表征的就是这种设备的内部噪声大小。  我们如何用正式的方式来表达这个噪音数字?如果器件的增益总是1,最简单的表示方法就是“输入噪声和输出噪声之间的差值”。但是,如果增益不是1(大于1) ,只看噪声级别的差异,你不知道增加的噪声级是由于放大还是内部产生。在这种情况下,估计内部噪声产生的更好方法是比较信噪比(信噪比) ,如下所示。    针对这个问题,我们提出了一个称为“噪声因子”--Noise Factor的指标,定义为输...
浏览次数: 5
2021/4/4 12:20:22
为了满足 RF 前端的功率需求,原始设备制造商(OEM)开始使用氮化镓 (GaN)这种相对较新的商用半导体材料。其功率效率、功率密度以及处理更宽频率范围的能力使其非常适合大规模 MIMO 基站应用。  人们对新一代移动网络 5G 的迅速普及感到非常兴奋,同时也充满了期待。分析师预测,2020 年商用 5G 网络的数量翻两番;5G 连接的总数将从 2019 年的 500 万增长到 2025 年的 28 亿;到 2026 年,5G 技术的全球市场规模将达到 6679 亿美元。遗憾的是,要实现这些宏伟的覆盖目标并非易事,它需要对现有移动网络基础设施(尤其是射频电源应用)进行重大变革。  为了满足 RF 前端的功率需求,原始设备制造商(OEM)开始使用氮化镓 (GaN)这种相对较新的商用半导体材料。其功率效率、功率密度以及处理更宽频率范围的能力使其非常适合大规模 MIMO 基站应用。本系列文章共有四部分,将分别探讨采用 GaN 的驱动因素、GaN 的半导体应用价值、嵌入式设计人员如何将 GaN 合理整合到设备中,以及未来将会出现哪些 GaN 创新。  全面了解 MIMO  要想充分发挥 5G 的数 Gbps 数据传输速度和超低延迟潜力,移动运营商需提高所有网络参数的性能。这意味着要对频谱采集、网络基础设施和传输技术进行大量投资。无论采取何种方式实现,对移动网络运营商来说,在全国范围内部署 5G 的成本都非常高。以较低成本提供 5G 服务是普及 5G 技术的最大障碍。尽管高频毫米波备受关注,但运营商目前仍采用 Sub-6GHz 大规模 MIMO 技术,以最大限度地降低成本,并在全国移动网络中部署 5G。  MIMO(多路输入/多路输出)是一种无线通信的天线技术,它采用多天线发送和接收信号。  与传统无线通信中通常使用单天线不同,MIMO 通过不同天线以多种信号的形式发送相同数据。这样...
浏览次数: 1
2021/4/4 12:08:06
研究背景  卫星导航系统广泛用于消费电子产品中,并提供导航、定位和跟踪功能。俄罗斯、美国、欧洲和中国分别安装了全球卫星导航系统(GLONAS)、全球定位系统(GPS)、伽利略和北斗。天线是确保低延迟、良好接收以提供高精度定位和可靠通信的关键组件之一。  微带贴片天线由于其外形小巧、成本低廉、易于制造以及可集成到有限空间中的小物理尺寸而成为现代电子产品中的一种流行选择。微波陶瓷电介质已被广泛用作车辆卫星导航天线的基板,但常规陶瓷烧结技术通常使用1200°C以上的高温来致密化陶瓷,无法与低熔点贱金属电极(银、 铜、铝等)共烧。因此,低温共烧陶瓷(LTCC,烧结温度700-1000°C)和超低温共烧陶瓷(ULTCC,烧结温度400-700°C)随之迅速发展。  然而,某些高度集成、直接紧凑的系统需要可直接在聚合物基印刷电路板(PCB)上制造的卫星导航天线。因此,需要彻底改变微波陶瓷及射频器件制造工艺,将具有低损耗(高品质因数,Q×f ≥ 3000 GHz)、温度稳定(低的谐振频率温度系数,TCF = +/-3 ppm/°C)和中低介电常数 (8   研究成果  英国谢菲尔德大学Ian M. Reaney教授团队的王大伟博士(第一及通讯作者),联合英国拉夫堡大学Shiyu Zhang博士(共同一作)、西安交通大学周迪教授和杭州电子科技大学宋开新教授针对上述问题,利用冷烧结技术在超低温150°C成功制备了致密度大于95%的Bi2Mo2O9-K2MoO4(BMO-KMO)复合微波陶瓷。XRD、Raman、BSE和EDX等表征手段证明了BMO和KMO两相共存,没有发生化学反应(图1)。BMO-10%KMO复合陶瓷具有近零温度系数(TCF = -1 ppm/°C)、中介电常数 (εr = 31)和较高的品质因素(Q...
浏览次数: 3
2021/4/4 11:53:42
两位年轻的同事画了一块电路板,由于之前选择过FC135封装的32.768kHz的晶振。所以为了把25MHz的晶振,也做成这个封装。但是呢,没有跟采购和供应商进行交流。  当电路投板之后,准备采购元器件的时候,傻眼了。根本就买不着FC135封装的25MHz的晶振。于是调试电路的老同志仰天长啸。    为什么有些封装只有32.768kHz的频率的晶体才有呢?  首先,我们看一张长图来对比:    我们可以看到32.768kHz的晶体的封装与其他频率的封装几乎没有交集。  那么,有经验的朋友有没有发现,两列晶振的规律呢?  从身材比例来说,右边的32.768的封装有点像姚明,瘦高型;左边普通晶体的身材像曾志伟,矮胖型。  那么为什么会有这样的现象呢?是32.768kHz的晶体有什么特殊之处?  1、晶振的基本原理  振荡器是一种能量转换器,石英谐振器是利用石英晶体谐振器决定工作频率,与LC谐振回路相比,它具有很高的标准性和极高的品质因数,,具有较高的频率稳定度,采用高精度和稳频措施后,石英晶体振荡器可以达到10-4~10-11稳定度。  基本性能主要是起振荡作用,可利用其对某频率具有的响应作用,用来滤波、选频网络等,石英谐振器相当于RLC振荡电路。  石英晶体俗称水晶,是一种化学成分为二氧化硅(SiO2)的六角锥形结晶体,比较坚硬。它有三个相互垂直的轴,且各向异性:纵向Z轴称为光轴,经过六棱柱棱线并垂直于Z轴的X轴称为电轴,与X轴和Z轴同时垂直的Y轴(垂直于棱面)称为机械轴。  石英晶体之所以可以作为谐振器,是由于它具有正(机械能→电能)、反(电能→机械能)压电效应。  沿石英晶片的电轴或机械轴施加压力,则在晶片的电轴两面三刀个表面产生正、负电荷,呈现出电压,其大小与所加力产生的形变成正比;若施加张力,则产生反向电压,这种现象称为正电效应。  当沿石英晶片的电轴方向加电场,则晶片...
浏览次数: 2
2021/4/4 11:24:02
介绍了一种基于VPX架构的高速宽带数据通信平台,平台的核心是机载和地面收发信机,收发信机内各功能板卡的主要控制器是FPGA。发射端对信息序列进行打包、信道编码、交织和调制;接收端对信号进行解调、解交织、解码、同步等操作。还原后的信息上传至上位机进行分析。  随着无人机技术和高分载荷等应用技术的发展成熟,海洋、林业、住建、资源、测绘、公安等各行业对高分辨率对地观测系统表现出了巨大需求,因此,把握当前无人机发展的大好时机,研制新一代的通信平台势在必行。  传统的数据链存在着误码率高、衰落大、干扰严重等问题,即使采用高效的信息压缩编码技术仍难以满足高光谱、激光雷达、合成孔径雷达等一系列高分载荷数据传输的带宽要求。针对现有技术的不足,本设计中通过引进美军成熟先进的VPX总线,构建新一代的数据通信平台,实现由传统到高速、宽带、多功能、通用性强的通信平台的跨越。  1 系统组成  该数据平台的整个系统包括机载数据终端和测控站数据终端,各数据终端由天线、微波前端和收发信机3个部分组成,共同实现数据通信功能,图1是该系统组成图。机载终端用于接收、解析地面测控终端上传的遥控指令或数据,同时向地面测控终端实时回传遥测信息和任务载荷数据,测控站终端用于接收飞机回传的遥测信息和任务载荷数据,并输出至指控系统显示,同时将指控系统发出的遥控指令上行传输至机载端,实现对飞机平台、任务载荷的实时监控。收发信机对所要收发的信息进行数字信号处理,微波前端实现双工、功放、低噪放功能,天线实现无线信号的发射与接收。  平台的高速宽带设计核心在收发信机内实现,收发信机由VPX总线背板,图像主控板,基带板,中射频板和电源板组成,另外,可以通过插入其他功能扩展板卡实现系统的功能扩展。  2 VPX总线背板设计  背板在整个系统平台占据非常重的作用,它为各个功能板卡的模块互联提供基础。在收发信机设计时,200 Mbit/...
浏览次数: 0
2021/4/4 11:14:27
射频电缆组件的寿命取决于三个因素:电缆本身的抗弯曲性能,电缆和接头之间的良好连接及其抗弯曲性能,接头的寿命。对于前二项因素,可以采取工装夹具或者规范操作者的动作来保证;而对于接头的寿命,则只能依赖接头本身的质量以及装配工艺来保证了。  以N型连接器为例,在射频连接器的国际标准,如美军标MIL-C-39012和国际电工委员会IEC 60169-16中,规定了N型(铜材)连接器的插拔寿命是500次。  是这样描述的:在12圈/每分钟的条件下,最少插拔500次,连接器应满足配合要求。而IEC 60169-16中则规定了在0.7-1.1Nm的力矩条件下,最少的插拔寿命为500次。  在和射频测试电缆的使用者的交流中,我们时常可以听到这样的声音:500次?太少了,我们至少都要用到几千次之所以有这样的认识,是因为没有了解连接器的各种应用条件和标准中所规定指标的具体含义。仔细分析标准中规定指标的附加条件并结合实际应用的经验,可以对射频连接器的寿命定义得出以下结论:  1.500次的寿命是在N型连接器规定力矩(0.7-1.1Nm)条件下的指标。要达到这个力矩,需要采用专用的力矩扳手,普通人的正常操作无法达到这个力矩。笔者针对N型连接器做过一个试验:当感觉用手已经拧紧时,用标准力矩扳手(Suhner P/N 74 Z-0-0-193)还可以再拧紧将近半圈。  2.所谓500次寿命的含义是:当按照规定力矩插拔500次之内,所有的电气指标是保证在出厂指标的规定范围内。以BXT生产的测试电缆为例(Nm-Nm,1米长,BXT P/N RG223-03-03-1000A),其出厂指标为插入损耗0.84~1.4dB/dc-3GHz;驻波比为1.15~1.25@dc-3GHz。当插拔500次后,上述指标依然是可以保证的。  3.除非精密的计量和校准测试,在生产线上,很少采用昂贵的标准力矩扳手来拆装射频连接...
浏览次数: 3
2021/4/4 10:35:41
有源EMI滤波技术是一种较新的EMI滤波方法,可减弱电磁干扰,让工程师能够大幅缩小无源滤波器的尺寸、降低成本并提升EMI性能。为了说明有源EMI滤波器在EMI性能提升和空间节省方面的主要优势,在本文中,我将回顾集成了有源EMI滤波器功能的汽车同步降压控制器设计的结果。    EMI滤波    无源滤波使用电感器和电容器在EMI电流路径中产生阻抗失配,以此减少电源电路的传导发射。相比之下,有源滤波可感应输入总线上的电压,并产生反相的电流,该电流可直接与开关级产生的EMI电流抵消。    在此背景下,请看一下图1中简化的无源和有源滤波器电路,其中 iN 和 ZN 分别表示针对直流/直流稳压器的差分模式噪声诺顿等效电路的电流源和阻抗。    图1:常规的无源滤波(a)和有源滤波(b)电路安装启用    在图1b中,配置了电压感应和电流消除(VSCC)的有源EMI滤波器使用运算放大器电路作为电容倍增器来代替无源设计中的滤波电容器(CF)。如图所示,有源滤波器的感应、注入和补偿阻抗使用相对较低的电容值和较小的元件尺寸来设计增益项,用GOP 表示。有效的有源电容由运算放大器电路增益和注入电容器 (CINJ) 设置。    滤波性能优化    图2比较了基于传导EMI测试的无源和有源EMI滤波器设计,该类设计使用峰值和平均值检波器来满足国际无线电干扰特别委员会 (CISPR) 25 5 类标准。每种设计都使用基于 LM25149-Q1 同步降压直流/直流控制器的功率级,通过13.5V的汽车电池输入提供5V和6A的输出。开关频率为440kHz。    图3所示为启用和禁用有源EMI滤波器电路时的结果。与未滤波或原始噪声信号相比,有源...
浏览次数: 1
2021/4/2 9:36:25
功率放大器类如何工作功率放大器(PA)使用不同的放大方案来增强输入信号,具体取决于应用需求和要增强的信号的性质。信号可以是连续波(CW)或多种形式的脉冲波形,具有不同的脉冲宽度和占空比。在输出功率,增益,效率,线性度和其他性能参数方面,不同的信号类型具有不同的放大需求。理想情况下,功率放大器工作效率很高,因此它的大部分应用电源用于提高输入信号的幅度和高线性度,因此在大多数输入功率范围内,输出功率与输入功率成正比。但是,实际上,设计人员会根据给定应用程序的要求在效率和线性之间进行权衡。较低的效率导致功率在PA半导体结中转换为热量,必须将其散发以避免性能下降并保护放大器及其有源器件免于过热。同时,较差的线性度意味着放大器将在其功率曲线的非线性区域中更多地工作,从而可能以谐波和互调产物的形式产生失真。优先级取决于应用程序的性质和所涉及的信号。例如,在具有幅度调制(AM)和/或相位调制(PM)的通信系统中常见的一些输入信号,需要在放大器的输入端到较高幅度的输出信号之间保持幅度和相位关系。具有良好线性度的放大器可保持AM和PM关系。当增强此类系统中常见的多音信号时,线性差的PA会产生不可接受的互调失真(IMD)。在其他应用中,例如使用脉冲信号的雷达,放大器效率,增益和输出功率可能更为重要,并且可能不需要高线性度。开发了不同类别的放大器,以帮助用户区分导致线性度,效率和其他参数达到不同平衡的各种配置和工作模式。本文介绍了最常见的RF放大器类别(A,AB,B等)的基本特征和区别,和C)。通过检查实际示例来说明典型性能。学习字母:放大器类之间的差异不同的放大器类用大写字母表示,具有从A类到T类的不同配置,尽管最常见的配置是:A级B级C级以及称为AB类的混合配置通常,放大器的类别是指放大器的晶体管处于“ ON”状态或处于其导通状态的被放大的波形部分。有源器件处于完全360°导通状态...
浏览次数: 7
2021/3/30 9:43:23
兆亿微波:借助我们针对电动汽车(EV)无线电池管理系统开发的全新解决方案,客户可以设计出更轻、每次充电后行驶里程更远且满足高水平安全标准的电动汽车,从而提高可靠性。除了舒适的内饰和精美的仪表板,制造商还会在电动汽车的机箱安装尽可能多的电池。更多的电池意味着更大的充电容量,从而使汽车具有更远的行驶里程,这也是消费者的一项重要需求。但是,每块电池必须连接监测器。监测器向控制器报告关键信息,进而更大限度改善电池的健康状态和性能。由于典型的电动汽车串联了近100节电池,其中几英尺/米和几磅/公斤的重型铜线会形成迷宫般庞大的电池管理布线,占用了许多宝贵的空间。上述所有导线的重量会缩短行驶里程、降低可靠性并增加成本。我们全新的无线电池管理系统包括专有的无线连接协议和一组电子芯片,并率先支持系统级功能安全合规性,不需要繁重、昂贵且需要频繁维护的布线,给电动汽车的设计带来了新的机遇。“这就像在一块空白的画布上进行设计,”TI专攻连接解决方案的汽车产品营销工程师Daniel Torres说,“当你不必担心导线问题时,就可以找到充分利用空间的新方法,甚至可以搭配使用不同尺寸和类型的电池。”BMS:幕后的关键组件电动汽车车主可能对他们汽车的电池管理系统了解不多,但实际上,电池管理系统是至关重要的组件,负责监测所有电池的电压、电流和温度。“最重要的是,BMS可以更大限度提高电动汽车的性能、可靠性和使用寿命,”TI汽车电池产品的产品线经理Ankush Gupta提到,“通过精心管理电池的充电和其他工作特性,可以在需要时充分利用每块电池中的电量,同时确保电池不会提前出现电量不足或受到损坏。而且,消除通信导线会使车辆更轻,我们也有更大的空间、自由度和灵活性来设计具有先进电池功能的电动汽车。”Ankush和Daniel说,这一成果可以直接帮助减轻“里程焦虑”,即对电量耗尽的恐惧,正是这样的焦虑和恐惧使得许...
浏览次数: 2
2021/3/30 9:32:38
兆亿微波:LT8710 是一款多功能 DC/DC 控制器,该器件支持升压、SEPIC、反相或反激式配置,并且广泛用于汽车和工业系统。LT8710 具备的特性使其能够在高阻抗电源的应用、或者必须限制输入电流的应用中使用。例如,工业厂房和仓库中的长电源线增加了明显的输入源电阻以及从转换器至负载的显著电压降。当设备重新安置时该数值会发生变化,因而使稳压进一步复杂化。太阳能电池板也具有一个高输入阻抗,以及一个峰值功率输出和窄电压范围。本设计要点以锂离子电池充电器为例说明了 LT8710 怎样解决高阻抗和电流受限输入电源的问题。图 1 示出了一款充电器解决方案,适用于便携式电动工具中常用的 20 V 锂离子电池。电压源 VSRC 为 24 V,通过一根高阻抗电源线(电阻器 RLN ),在充电器输入端子上产生电压 VIN。该电压源可被视为一个通用型 12 V 太阳能电池板,具有 22 V 至 24 V 开路电压和 18 V 至 19 V 最佳工作电压。此充电器基于一种同步非耦合式 SEPIC 拓扑,并受控于 LT8710。功率链路由分立式电感器 L1、L2,晶体管 Q1、Q2,介于电感器之间的去耦电容器、和输入 / 输出滤波器构成。电阻器 RSC 设定 2 A 的充电电流 ICHRG;电阻器 RV(FL) 设定 21 V 的浮动电压。电阻分压器 RIN1/RIN2 设定输入电压调节水平 (在本例中为 18.6 V)。图 1。LT8710 锂离子电池充电器的电原理图 (在高阻抗输入线路中)。图 2 示出了该充电解决方案随时间变化的功能状况。当 VIN 和电源电压 VSRC 高于 19 V 时,基于 LT8710 的 SEPIC 将锂离子电池充电至设定的 2 A ICHRG。当 VSRC 降至 20 V 以下时,VIN 的数值也会相应降低。当 VIN 达到输入电压调节水平时,LT8710 ...
浏览次数: 4
2021/3/30 9:16:34
恶劣环境是电机控制或电磁阀控制应用中的许多电气系统必须面对的现实。控制电机和电磁阀的电子装置需要非常接近使终端应用发生物理运动的高电流和电压。除了近距离外,这些系统常常会进行维修(例如,雇佣技工更改洗碗机电磁阀的控制器板),这就为非故意的接线错误留下了可能性。接近高电流和电压,加上接线不当的可能性,要求设计需要考虑过压保护。为了构建高效安全的系统,须使用精密电流检测放大器来监控这些应用中的电流。精密放大器电路设计需要防止过压影响,但这种保护电路可能会影响放大器的精度。适当地设计、分析和验证电路,可以在保护和精度之间达成平衡。本文讨论两种常见保护电路,以及这些电路的实施会如何影响电流检测放大器的精度。电流检测放大器大部分电流检测放大器可处理高共模电压(CMV),但不能处理高差分输入电压。在某些应用中,存在分流器的差分输入电压超过放大器的额定最大电压的情况。这在工业和汽车电磁阀控制应用(图1)中很常见,短路可能会引发故障,将电流检测放大器暴露于高差分输入电压(其可能达到与电池相同的电位)之下。这种差分过压可能会损坏放大器,尤其是在没有保护电路的情况下。图1. 电磁阀控制应用中的高端电流检测过压保护电路图2显示电流检测放大器的过压保护基本连接。当差分输入电压超过指定放大器的最大额定值时,放大器就可能会将电流拉入内部保护二极管。若输入引脚之间存在大差分电压信号,则额外的串联电阻R1和R2可防止大电流流入内部保护二极管。图2. 基本过压保护电路保护电路能够承受的最大额定电压和最大输入电流随器件而不同。一般经验法则是,流过内部差分保护二极管的电流应以3 mA为限,除非规格书指明可接受更大的电流值。将该值代入以下等式,计算R1和R2的值:其中:VIN_MAX是预计最大差分电压。VRATED_MAX是最大额定电压(0.7 V)。R是总串联电阻(R1 + R2)。例如,假设预计最大瞬态输入电...
浏览次数: 4
2021/3/29 16:57:34
功率分配器/组合器是一种无源设备,可以用于两种互惠功能:单个信号可以分为多个输出,或者在相反的方向上,多个输入信号可以组合成单个输出。如果是N端口分配器,则输入信号将被划分为N个输出端口。当用作N端口组合器时,N个输入将被组合为来自单个端口的输出信号。应用包括测试仪器,实验室和生产测试系统,功率放大器子系统以及多种类型的信号处理。最常见的功率分配器/组合器类型在N个端口之间具有相等的幅度和0?相位差,并且具有相同的阻抗。作为分配器,输入至输出的损耗取决于N-例如,2个端口的3 dB损耗,4个端口的6 dB损耗,等等-加上内部电路的较小插入损耗。作为组合器,单端口输出是N端口输入的总和。信号处理所需的相移或幅度不相等通常是通过外部电路实现的,但某些常用配置可能会包含在功率分配器/组合器套件中。分离器/合并器的另一个功能是多个端口之间的隔离。该设备的内部电路设计用于消除从N个端口之一传递到任何其他端口的信号。为了实现良好的隔离并保持准确的功率分配,内部电路必须进行平衡,任何不平衡都将直接转移到负载电阻上,在该电阻上会耗散其能量。功率分配器/组合器处理不平衡条件的能力是正确实施的关键因素,因为负载电阻的额定值限制了功耗。本应用笔记的重点是演示合并N个输入信号如何影响器件的功率处理,尤其是与非相干信号一起使用时。了解信号的连贯性使用各种定义来解释输入信号的相位相干性。也许最简单的是相干性是指两个信号具有相同的频率并保持恒定的相位偏移。换句话说,两个信号之间的相对相位Δφ(图1和2)随时间保持恒定。相反,如果两个信号彼此之间的相位不恒定,则认为它们是非相干的,如图3所示。考虑一个2路功率分配器。源是一个信号,它被分成两个输出信号,每个输出信号的原始功率只有一半(-3 dB)。输出之间没有相位差,因为它们来自相同的输入信号。因此,输出是连贯的。如果我们在一条信号路径(例如传输线的一部分...
浏览次数: 4
2021/3/23 11:31:35
单级滤波器设计同步降压变换器由输入电容器CIN、两个开关(S1和S2)及其体二极管、储能电感(L)和输出电容器(COUT)组成。当S1接通,S2断开时,输入源向功率电感(L)和负载提供电流,此时,电感电流上升。当S2接通而S1断开时,电感器中存储的能量被转至输出电容器和负载,导致电感器电流下降。降压调节器的开关行为导致输出电压波动。此时,应在输出端放置一个输出电容器(Cout),以便在稳态时平滑输出电压。输出电容器通过为高频电压分量提供低阻抗路径,将高频纹波反射回接地,从而降低输出电压纹波。接着,假设Buck降压变换器采用连续导通模式(CCM),以最大限度地降低输出电压纹波。L电感值也满足电感器的电流纹波要求,其最小值可通过以下公式计算得出:其中,VIN 和 VOUT 分别代表输入和输出电压, 代表占空比,IL,p--p 代表电感的峰-峰电流纹波,fSW代表变换器的开关频率。通常,峰-峰电感电流纹波可设置为输出DC电流的20-40%。输出电容值应能确保其输出纹波低于应用需要的峰-峰纹波值。对于单级电容滤波器,其最小输出电压纹波可达1~2 mV。在稳态下的一个开关周期内,向电容器输送的净电荷为零。图1阴影区的电容电荷可通过以下公式计算得出:其中T为开关切换周期。根据定义,给定周期内的电容电荷也可表示为:公式(2)代入公式(3),得到输出峰-峰电压纹波(VOUT,p--p)所需的最小电容为:理想情况下,并联更多的输出电容可以降低对地的高频阻抗,从而减小输出纹波。而实际上,输出电容器是横放在印刷电路板上的,如果在印刷电路板上增加更多的输出电容,会给并联电路增加额外的寄生电感和交流电阻,增加输出电容的效果会逐渐降低。如图2所示的典型PCB布局,MPS电源模块通过集成电感,可大大简化电源转换器设计。在MPM3833C的PCB布局中,为输出功率路径进行了大面积铺铜,这能最大限度地降低功...
浏览次数: 1
2021/3/23 10:33:23
Z-Communications,Inc.正式宣布推出一款新型,符合RoHS要求的高性能VCO(电压控制振荡器)型号CRO3700K-LF。CRO3700K-LF在0.5至18 Vdc的调谐电压范围内覆盖3600至3800 MHz的频率范围。这款创新的VCO具有-106 dBc / Hz的频谱干净信号@ 10 kHz偏移,同时以18 MHz / V的典型调谐灵敏度覆盖该频带。低成本CRO3700K-LF旨在在-40至85?C扩展商业温度范围内工作时,向50 ohm负载提供3±3 dBm的输出功率。该无与伦比的VCO在8 Vdc电源下工作,典型地吸收30 mA电流,并具有典型的-20 dBc二次谐波抑制功能。CRO3700K-LF采用Z-COMM的标准MINI-16-SM封装,尺寸为0.5英寸x 0.5英寸x 0.22英寸,根据生产要求提供卷带包装,非常适合自动表面贴装和回流焊。CRO3700K-LF非常适合要求低相位噪声性能的卫星通信应用和微波无线电系统。有关此型号或Z-Communications,Inc.的任何其他产品的更多信息,请通过电子邮件(lisg@rfz1.com)与我们联系,或致电010-62982657。或者直接咨询兆亿微波商城在线客服!零件编号:CRO3700K-LF交货时间:8周
浏览次数: 1
2021/3/19 9:14:09
  • 品质 • 正品行货 购物无忧
  • 低价 • 普惠实价 帮您省钱
  • 速达 • 专业配送 按时按需
Copyright ©2020 - 2021 兆亿微波科技有限公司
X
3

SKYPE 设置

4

阿里旺旺设置

5

电话号码管理

  • 010-62975458
6

二维码管理

返回顶部
展开