嗨,欢迎来到兆亿微波官方商城!
服务热线: 010-82788689  010-62975458
购物车图片 购物车 ( )
全部商品分类

什么是电源管理芯片?

2020/10/28 13:11:29
浏览次数: 12

电源管理芯片(Power Management Integrated Circuits),也叫电源管理IC。是在电子设备系统中担负起对电能的变换、分配、检测及其他电能管理的职责的芯片.主要负责识别CPU供电幅值,产生相应的短矩波,推动后级电路进行功率输出。


电源IC现在的发展趋势已经不局限于单一功能,而是将各种功能整合在一起,所以电源IC目前更多的被称为电源管理IC,或电源管理单元(PMU)。


充电装置CMOS Sennor或是等已成为模拟IC业者开始投入的领域, 如何通过更低耗电的设计以减少电力的消耗, 及更轻薄短小和更低价钱已成为厂商努力的方向。电源IC可以说是单价不高, 但责任重大。

什么是电源管理芯片?

基本类型:

主要电源管理芯片有的是双列直插芯片,而有的是表面贴装式封装。


其中HIP630x系列芯片是比较经典的电源管理芯片,由著名芯片设计公司Intersil设计。它支持两/三/四相供电,支持VRM9.0规范,电压输出范围是1.1V-1.85V,能为0.025V的间隔调整输出,开关频率高达80KHz,具有电源大、纹波小、内阻小等特点,能精密调整CPU供电电压。


应用范围:

电源管理芯片的应用范围十分广泛,发展电源管理芯片对于提高整机性能具有重要意义,对电源管理芯片的选择与系统的需求直接相关,而数字电源管理芯片的发展还需跨越成本难关。


当今世界,人们的生活已是片刻也离不开电子设备。电源管理芯片在电子设备系统中担负起对电能的变换、分配、检测及其它电能管理的职责。电源管理芯片对电子系统而言是不可或缺的,其性能的优劣对整机的性能有着直接的影响。


提高性能:

所有电子设备都有电源,但是不同的系统对电源的要求不同。为了发挥电子系统的最佳性能,需要选择最适合的电源管理方式。


首先,电子设备的核心是半导体芯片。而为了提高电路的密度,芯片的特征尺寸始终朝着减小的趋势发展,电场强度随距离的减小而线性增加,如果电源电压还是原来的5V,产生的电场强度足以把芯片击穿。


所以,这样,电子系统对电源电压的要求就发生了变化,也就是需要不同的降压型电源。为了在降压的同时保持高效率,一般会采用降压型开关电源。


同时,许多电子系统还需要高于供电电压的电源,比如在电池供电设备中,驱动液晶显示的背光电源,普通的白光LED驱动等,都需要对系统电源进行升压,这就需要用到升压型开关电源。


此外,现代电子系统正在向高速、高增益、高可靠性方向发展,电源上的微小干扰都对电子设备的性能有影响,这就需要在噪声、纹波等方面有优势的电源,需要对系统电源进行稳压、滤波等处理,这就需要用到线性电源。


上述不同的电源管理方式,可以通过相应的电源芯片,结合极少的外围元件,就能够实现。可见,发展电源管理芯片是提高整机性能的必不可少的手段。


选择因素:

电源管理的范畴比较广,既包括单独的电能变换(主要是直流到直流,即DC/DC),单独的电能分配和检测,也包括电能变换和电能管理相结合的系统。相应的,电源管理芯片的分类也包括这些方面,比如线性电源芯片、电压基准芯片、开关电源芯片、LCD驱动芯片、LED驱动芯片、电压检测芯片、电池充电管理芯片等。

什么是电源管理芯片?


下面简要介绍一下电源管理芯片的主要类型和应用情况:


如果所设计的电路要求电源有高的噪音和纹波抑制,要求占用PCB板面积小(如手机等手持电子产品),电路电源不允许使用电感器(如手机),电源需要具有瞬时校准和输出状态自检功能,要求稳压器压降及自身功耗低,线路成本低且方案简单,那么线性电源是最恰当的选择。


这种电源包括如下的技术:精密的电压基准,高性能、低噪音的运放,低压降调整管,低静态电流。


在小功率供电、运放负电源、LCD/LED驱动等场合,常应用基于电容的开关电源芯片,也就是通常所说的电荷泵(Charge Pump)。


基于电荷泵工作原理的芯片产品很多,比如AAT3113。这是一种由低噪声、恒定频率的电荷泵DC/DC转换器构成的白光LED驱动芯片。


AAT3113采用分数倍(1.5×)转换以提高效率。该器件采用并联方式驱动4路LED。输入电压范围为2.7V~5.5V,可为每路输出提供约20mA的电流。


该器件还具备热管理系统特性,以保护任何输出引脚所出现的短路。其嵌入的软启动电路可防止启动时的电流过冲。AAT3113利用简单串行控制接口对芯片进行使能、关断和32级对数刻度亮度控制。


而基于电感的DC/DC芯片的应用范围最广泛,应用包括掌上电脑、相机、备用电池、便携式仪器、微型电话、电动机速度控制、显示偏置和颜色调整器等。


主要的技术包括:BOOST结构电流模式环路稳定性分析,BUCK结构电压模式环路稳定性分析,BUCK结构电流模式环路稳定性分析,过流、过温、过压和软启动保护功能,同步整流技术分析,基准电压技术分析。


除了基本的电源变换芯片,电源管理芯片还包括以合理利用电源为目的的电源控制类芯片。


如NiH电池智能快速充电芯片,锂离子电池充电、放电管理芯片,锂离子电池过压、过流、过温、短路保护芯片;在线路供电和备用电池之间进行切换管理的芯片,USB电源管理芯片;电荷泵,多路LDO供电,加电时序控制,多种保护,电池充放电管理的复杂电源芯片等。


特别是在消费类电子方面。比如便携式DVD、手机、数码相机等,几乎用1块-2块电源管理芯片就能够提供复杂的多路电源,使系统的性能发挥到最佳。


相关优势:

电子设备所具备的功能越多、性能越高,其结构、技术、系统就越复杂,传统的模拟技术电源管理IC满足系统整体电源管理要求的难度也就越大,价格也更加昂贵。


数字控制器的核心主要由三个特殊模块组成:抗混叠(anti-aliasing)滤波器、模数转换器(ADC)和数字脉冲宽度调制器(DPWM)。


为了达到与模拟控制架构同等的性能指标,必须具备高分辨率、高速和线性ADC以及高分辨率、高速PWM电路设计。


ADC分辨率必须能够满足误差小于输出电压允许变化的范围,所需的输出电压纹波越小,则对ADC的分辨率要求越高。


同时,由于抗混叠滤波器以及流水线式或SAR模数转换器会引入环路延时,所以我们迫切需要高采样速率的模数转换器。模拟控制器对所产生的可能脉冲宽度存在固有的限制,而DPWM可以产生离散和有限的PWM宽度集。


从稳定状态下的输出角度看,只可能有一组离散的输出电压。由于DPWM是反馈环路中的一部分,因此DPWM的分辨率必须足够高才能使输出不显示众所周知的极限周值。不显示任何极限周值所需的最少位数取决于拓扑、输出电压和ADC分辨率。同时,系统的环路稳定性由PI或者PID控制器来调整。


(以上内容整理网络,如有侵权请联系删除!)


推荐阅读
  • 点击次数: 2
    2021-04-13
    据兆亿微波了解,中国,北京 – Analog Devices, Inc. (ADI)今天推出一款16通道混合信号前端(MxFE)数字转换器,可用于航空航天和防务应用,包括相控阵雷达和地面卫星通信(SATCOM)。这款新型的数字转换器包含四个AD9081或四个AD9082软件定义的直接RF采样收发器。该产品旨在通过提供参考RF信号链、软件架构、电源设计和应用示例代码来帮助客户加速开发进程。  ADI还推出了一款数字转换处理卡与之配合使用,方便执行系统级校准算法和演示上电相位的确定性。ADQUADMXFE1EBZ 16通道混合信号前端数字转换器主要特性: ●     16个RF接收(Rx)通道(32个数字Rx通道)●     16个RF发射(Tx)通道(32个数字Tx通道)●     提供MATLAB®应用脚本形式的特定应用示例和GUI●     灵活的时钟分配 ADQUADMXFE-CAL数字转换卡主要特性: ●     提供单独的相邻通道回送和组合通道回送选项●     通过SMA连接器提供组合Tx和Rx通道输出●     板载对数功率检波器,具备AD5592R数字转换功能报价与供货产品说明供货起始单价封装ADQUADMXFE1EBZQuad-MxFE(第二奈奎斯特区Rx操作,采用AD9081)现已供货$12,000箱装,配有电源和一些相关线缆ADQUADMXFE2EBZQuad-MxFE(第一奈奎斯特区Rx操作,采用AD9081)2021年6月$12,000箱装,配有电源和一些相关线缆ADQUADMXFE3EBZQu...
  • 点击次数: 1
    2021-04-13
    毫米波功率放大器是卫星通信系统、多媒体无线系统、高速WLAN和高速无线个人区域网络(WPAN)中的重要器件。本文从GaAs、GaN、InP技术分别综述了近年来国内外对毫米波波段功率放大器芯片的研究情况,介绍了相关的现有产品,并展望了毫米波波段MMIC功放发展的趋势。    一、背景介绍    消费者对无线数据传输速度的需求看似是无止境的。这提高了点与点无线连接的工作频率也为毫米波放大器设计提供了更多的机会。载波频率与数据传输速率的关系如下图所示。随着工作频率的增长,可以使用的器件在减少,而器件和实验设备的成本却很高。    对于毫米波放大器的最大应用是对于移动通信中的点与点连接。在6-40GHz范围的微波点与点连接已经是很成熟的技术。对于毫米波(30GHz)放大器,大约在38GHz的产品已经有很多了。    在60GHz左右的波段很有意义。在美国这是最广泛且灵活的分配,在57GHz到64GHz频带内是可以不注册而使用的。对于60GHz波段通常使用在户外媒体点对点连接、高速WLAN和高速无线个人区域网络(WPAN)。60GHz频段最大的特点是由于氧气的吸收而有较大的大气衰减。这虽然减短了实际的传输距离,但这常常视作减少干扰和频谱在利用的好处。然而,对于高速WLAN/WPAN应用,60GHz的频段是很具吸引力的选择。在这种情况下,潜在产品量会很多,由于所需的性能(如:噪声系数、线性度、发射功率)低于点与点的连接且价格也会比较低。这些因素可以得出这样的结论:这种应用很有可能由高集成度的硅收发机所主导。对于输出低功率、小型化、低价格的MMIC放大器这会起到一定的作用。    60GHz毫米波通信的研发工作正日益活跃起来。该技术面向PC、数字家电等应用,能够实现设备间数Gbps的超高速...
  • 点击次数: 4
    2021-04-12
    电子设备中使用着大量各种类型的电子元器件,设备发生故障大多是由于电子元器件失效或损坏引起的。因此怎么正确检测电子元器件就显得尤其重要,这也是电子维修人员必须掌握的技能。小编精选了在电器维修中积累了部分常见电子元器件检测经验和技巧,供大家参考。    1.测整流电桥各脚的极性    万用表置R×1k挡,黑表笔接桥堆的任意引脚,红表笔先后测其余三只脚,如果读数均为无穷大,则黑表笔所接为桥堆的输出正极,如果读数为4~10kΩ,则黑表笔所接引脚为桥堆的输出负极,其余的两引脚为桥堆的交流输入端。    2.判断晶振的好坏    先用万用表(R×10k挡)测晶振两端的电阻值,若为无穷大,说明晶振无短路或漏电;再将试电笔插入市电插孔内,用手指捏住晶振的任一引脚,将另一引脚碰触试电笔顶端的金属部分,若试电笔氖泡发红,说明晶振是好的;若氖泡不亮,则说明晶振损坏。    3.单向晶闸管检测    可用万用表的R×1k或R×100挡测量任意两极之问的正、反向电阻,如果找到一对极的电阻为低阻值(100Ω~lkΩ),则此时黑表笔所接的为控制极,红表笔所接为阴极,另一个极为阳极。晶闸管共有3个PN结,我们可以通过测量PN结正、反向电阻的大小来判别它的好坏。测量控制极(G)与阴极[C)之间的电阻时,如果正、反向电阻均为零或无穷大,表明控制极短路或断路;测量控制极(G)与阳极(A)之间的电阻时,正、反向电阻读数均应很大;测量阳极(A)与阴极(C)之间的电阻时,正、反向电阻都应很大。    4.双向晶闸管的极性识别    双向晶闸管有主电极1、主电极2和控制极,如果用万用表R×1k挡测量两个主电极之间...
  • 点击次数: 3
    2021-04-07
    微波功率放大器主要分为真空和固态两种形式。基于真空器件的功率放大器,曾在军事装备的发展史上扮演过重要角色,而且由于其功率与效率的优势,现在仍广泛应用于雷达、通信、电子对抗等领域。后随着GaAs晶体管的问世,固态器件开始在低频段替代真空管,尤其是随着GaN,SiC等新材料的应用,固态器件的竞争力已大幅提高[1]。本文将对两种器件以及它们竞争与融合的产物——微波功率模块(MPM)的发展情况作一介绍与分析,以充分了解国际先进水平,也对促进国内技术的发展有所助益。    1.   真空放大器件    跟固态器件相比,真空器件的主要优点是工作频率高、频带宽、功率大、效率高,主要缺点是体积和质量均较大。真空器件主要包括行波管、磁控管和速调管,它们具有各自的优势,应用于不同的领域。其中,行波管主要优势为频带宽,速调管主要优势为功率大,磁控管主要优势为效率高。行波管应用最为广泛,因此本文主要以行波管为例介绍真空器件。    1.1   历史发展    真空电子器件的发展可追溯到二战期间。1963年,TWTA技术在设计变革方面取得了实质性进展,提高了射频输出的功率和效率,封装也更加紧凑。1973年,欧洲首个行波管放大器研制成功。然而,到了20世纪70年代中期,半导体器件异军突起,真空器件投入大幅减少,其发展遭遇极大困难。直到21世纪初,美国三军特设委员会详细讨论了功率器件的历史、现状和发展,指出真空器件和固态器件之间的平衡投资战略。2015年,美国先进计划研究局DARPA分别启动了INVEST,HAVOC计划,支持真空功率器件的发展和不断增长的军事系统需要,特别是毫米波及THz行波管[2-4]。当前真空器件已取得长足进步,在雷达、通信、电子战等系统中应用广泛。  ...
  • 点击次数: 5
    2021-04-04
    通常,我们在采购电子元器件的时候,会遇到各种参数,当你想到“噪声” ,通常你会认为噪声来自外面的某个地方。这话也没错,但是有一部分噪声是由组件(DUT)本身产生的。除非设备工作在绝对零度(摄氏零下273度) ,否则物体本身总会发出这样的噪声。在大多数情况下,我们只是忽略这种噪声,主要是因为噪声强度不大,不足以干扰正常的信号。  但有些情况下,我们不能忽略这些噪声产生的组件本身。对于这种情况,我们制定了一个规格来测量 、管理、 控制这种类型的噪声,这个指标被称为“噪声系数”。物理噪声系数和噪声系数指标相同,唯一的区别是噪声系数(Noise Figure)是对数标度(分贝) ,噪声因子(Noise Figure)是线性标度。  现在让我们来看看噪音数字的一些细节。假设你有一个虚构的设备,它的增益为1,这意味着它不能放大任何进入设备的信号,并且它完全受到任何外部噪声源的保护。假设您输入如左图所示的输出,并得到如右图所示的输出。你觉得有什么不同吗?是的...... 我没有看到任何不同的大小的信号峰值,这是可以理解的,因为这是一个设备增益1。那噪底呢?你会注意到输入的噪底和输出的噪底之间有很大的区别。为什么会变成这样?既然我们假设这是一个完全不受外界噪声干扰的理想设备,我们唯一能想到的可能性就是噪声是由设备本身(Device Under Test)本身产生的。噪声系数表征的就是这种设备的内部噪声大小。  我们如何用正式的方式来表达这个噪音数字?如果器件的增益总是1,最简单的表示方法就是“输入噪声和输出噪声之间的差值”。但是,如果增益不是1(大于1) ,只看噪声级别的差异,你不知道增加的噪声级是由于放大还是内部产生。在这种情况下,估计内部噪声产生的更好方法是比较信噪比(信噪比) ,如下所示。    针对这个问题,我们提出了一个称为“噪声因子”--Noise Factor的指标,定义为输...
  • 品质 • 正品行货 购物无忧
  • 低价 • 普惠实价 帮您省钱
  • 速达 • 专业配送 按时按需
Copyright ©2020 - 2021 兆亿微波科技有限公司
犀牛云提供企业云服务
X
3

SKYPE 设置

4

阿里旺旺设置

5

电话号码管理

  • 010-62975458
6

二维码管理

返回顶部
展开