

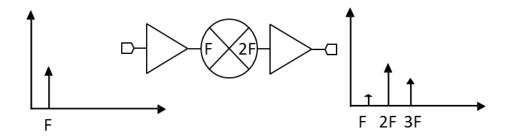
MMIC AMPLIFIER/DOUBLER/AMPLIFIER

ADA-1030

1. Device Overview

1.1 General Description

The ADA-1030 can be used as a frequency extender to enhance the frequency range of a <15 GHz synthesizer up to 30 GHz. Useful for lab testing, test and measurement, and prototype systems. It consists of an input buffer amplifier, doubler, and output buffer amplifier to provide a +16 dBm output (suitable for driving most mixers) from a 0-6 dBm input. In addition to operation as a module, it is suitable as a reference design for prototyping using only commercially available surface mount products.



Module

1.2 Electrical Summary

Parameter	Typical	Unit	
Input Frequency Range	5 - 15	GHz	
Output Frequency Range	10 - 30	GHz	
Input Power	0 to +6	dBm	
Output Power	+13 to +16	dBm	
1F Harmonic suppression	32	dBc	
3F Harmonic suppression	27	dBc	

1.3 Functional Block Diagram

1.4 Part Ordering Options¹

Part	Description		Product	Export
Number			Lifecycle	Classification
ADA-1030	Connectorized module	RoHS	Active	EAR99

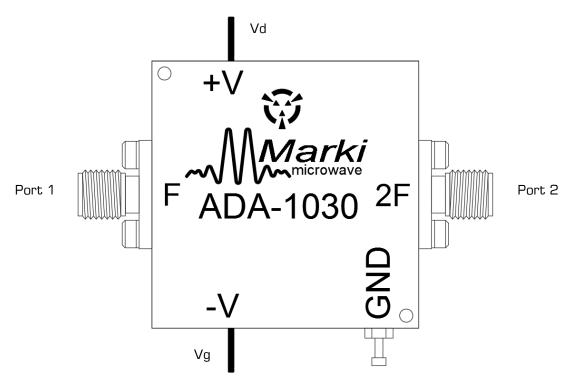
¹ Refer to our <u>website</u> for a list of definitions for terminology presented in this table.

Table of Contents

1	. Device Overview1	
	1.1 General Description1	
	1.2 Electrical Summary1	
	1.3 Functional Block Diagram1	
	1.4 Part Ordering Options1	
2	2. Port Configurations and Functions 3	
	2.1 Port Diagram3	

	2.2 Purt Functions	_
3	. Specifications	4
	3.1 Absolute Maximum Ratings	4
	3.2 Electrical Specifications	4
	3.3 Typical Performance Plots	5
4	. Mechanical Data	E
	4.1 Outline Drawing	E
	4.2 Assembly Drawing	E

Revision History


Revision Code	Revision Date	Comment		
-	December 2018	Datasheet Initial Release		

2. Port Configurations and Functions

2.1 Port Diagram

A top-down view of the ADA-1030 outline drawing is shown below.

2.2 Port Functions

Port	Function	Description	Equivalent Circuit
Port 1	Input	This pin is DC open and matched to 50 Ω .	P1 ~
Port 2	Output This pin is DC open and matched to 50 Ω .		P2
GND	Ground	Ground path is provided through the metal housing and outer ground lug.	GND○─
Vd	Positive bias	Drain bias port.	
Vg	Negative bias	Gate control for the amplifier	Vg ⊶ √

3. Specifications

3.1 Absolute Maximum Ratings

The Absolute Maximum Ratings indicate limits beyond which damage may occur to the device. If these limits are exceeded, the device may be inoperable or have a reduced lifetime.

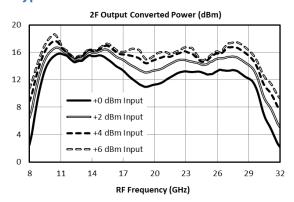
Absolute Maximum Ratings				
Parameter	Maximum Rating			
Positive Bias Voltage	9 V			
Positive Bias Current	550 mA			
Negative Bias Voltage	-2 V			
Negative Bias Current	4 mA			
RF Input Power	+20 dBm			
Power Dissipation	4 W			
ESD (Human Body Model)	Class 1A			
Operating Temperature	-55°C to +85°C			
Storage Temperature	-65°C to +150°C			

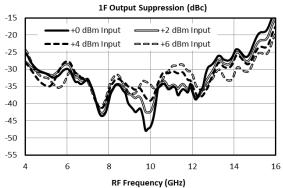
3.2 Electrical Specifications

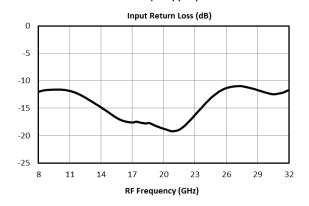
The electrical specifications apply at $T_A=+25^{\circ}C$ in a 50Ω system.

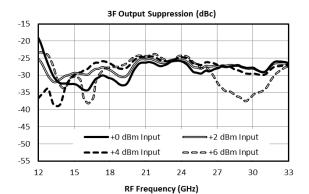
Parameter	INPUT (GHz)	OUTPUT (GHz)	Min	Тур.	Max
Input (dBm) ²					
F(in)	5.0 - 15.0			0 - 6	
Output Converted Power (dBm)					
2F(out)					
0 dBm Input Power				+13	
2 dBm Input Power		10.0 - 30.0	12	+14	
4 dBm Input Power				+15	
6 dBm Input Power				+16	
Suppressions (dBc)					
F(in) Fundamental		5.0 - 15.0		32	
3F(out) Third Harmonic		15.0 - 30.0		27	
Bias Requirements (mA) 1					
Vd: +7 Volts DC				300	
Vg: -0.15 Volts DC ³				0	

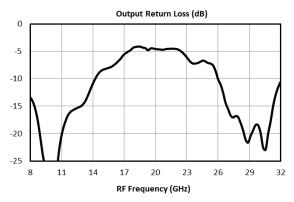
Suppression is relative to doubled output power. Isolation is defined as relative to the fundamental input power.

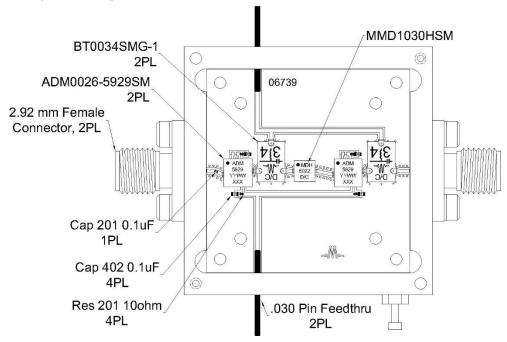

¹ The positive bias is from +3 to +7 Volts and the negative bias is from -0.25 to ground. The higher positive bias voltage, the better 2F output converted power will be, and the lower positive bias voltage, the better 1F, 3F harmonic suppression will be.

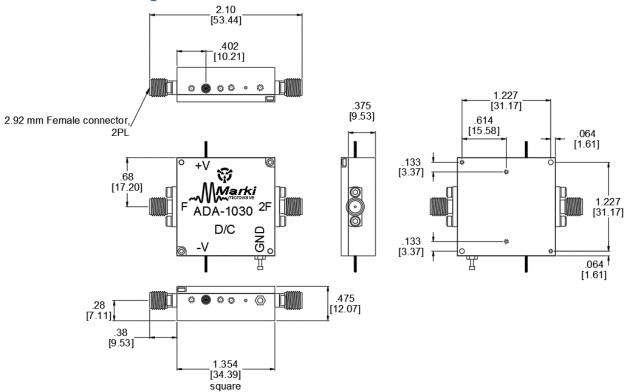

² The higher input power the better 2F output power and the worse 1F/3F suppression will be, (see plot **2F Output Converted Power**)


³ Suppression and current consumption will vary with negative bias voltage. Optimal performance is at approximately -0.15 V.




3.3 Typical Performance Plots





4. Mechanical Data

4.1 Assembly Drawing

4.2 Outline Drawing

Marki Microwave reserves the right to make changes to the product(s) or information contained herein without notice. Marki Microwave makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Marki Microwave assume any liability whatsoever arising out of the use or application of any product.