

RFFM8511

4.9GHz to 5.85GHz 802.11a/n/ac WiFi Front End Module

The RFFM8511 provides a complete integrated solution in a single front end module (FEM) for WiFi 802.11a/n/ac systems. The ultra-small factor and integrated matching minimizes layout area in the customer's application and greatly reduces the number of external components. This simplifies the total front end solution by reducing the bill of materials, system footprint, and manufacturing cost. The RFFM8511 integrates a 5GHz power amplifier (PA), single pole double throw switch (SP2T), LNA with bypass, and a power detector coupler for improved accuracy. The device is provided in a 2.5mm x 2.5mm x 0.40mm, 16-pin QFN package.

Functional Block Diagram

Ordering Information

RFFM8511SB	Standard 5-piece sample bag
RFFM8511SQ	Standard 25-piece bag
RFFM8511SR	Standard 100-piece reel
RFFM8511TR7	Standard 2500-piece reel
RFFM8511PCK-410	Fully assembled eval board w/ 5-piece bag

Package: QFN, 16-pin, 2.5mm x 2.5mm x 0.40mm

Features

- P_{OUT} = +18.0dBm at 3.6V, 802.11ac 80MHz MCS9 256QAM at 1.8% Dynamic EVM Compliance
- P_{OUT} = +19.0dBm, 11n 20MHz 2.5% (-32dB)EVM
- P_{OUT} = +21.0dBm at 3.6V, 802.11ac 80MHz MCS0 at Spectral Mask Compliance
- Input and Output Matched to 50Ω
- Integrated 5GHz PA, SP2T Switch, LNA, and PDET
- Low Height Package, Suited for Module and Chip On Board (CoB) designs
- Supports low power mode for improved efficiency

Applications

- Cellular Handsets
- Mobile Devices
- Tablets
- Consumer Electronics
- Gaming
- Netbooks/Notebooks
- TV/Monitors/Video

Absolute Maximum Ratings

Parameter	Rating	Unit
DC Supply Voltage (No RF Applied)	6	V
PA Enable Voltage	-0.5 to 5	V_{DC}
DC Supply Current	500	mA
Operating Temperature Range	-40 to +85	∘C
Storage Temperature	-40 to +150	°C
Maximum TX Input Power for 11a/n (No Damage)	+12	dBm
LNA On Maximum RX input power (No damage)	+12	dBm
Bypass Mode Maximum RX input power (No damage)	+25	dBm
Moisture Sensitivity	MSL2	

Caution! ESD sensitive device.

RFMD Green: RoHS status based on EU Directive 2011/65/EU (at time of this document revision), halogen free per IEC 61249-2-21, < 1000ppm each of antimony trioxide in polymeric materials and red phosphorus as a flame retardant, and <2% antimony in solder.

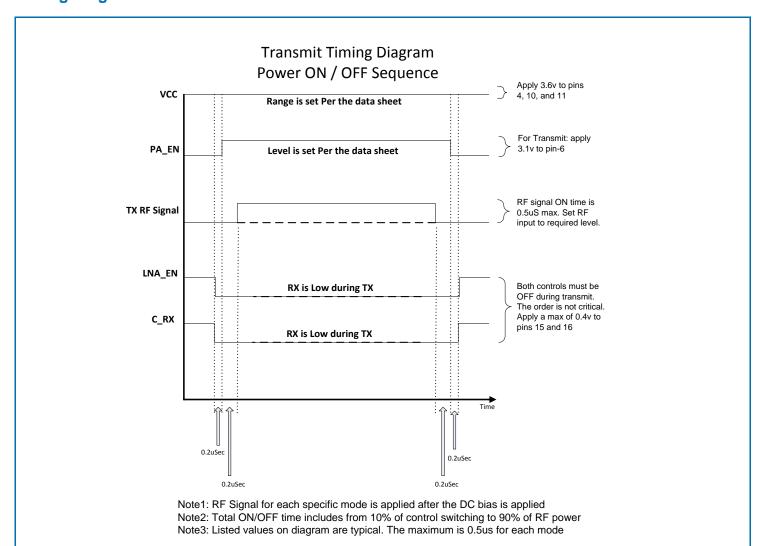
Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

Nominal Operating Parameters

Parameter	Specification			Unit	Condition
	Min	Тур	Max	Offic	Condition
Compliance					802.11a, 802.11n, 802.11ac
Operating Frequency	5.18		5.825	GHz	
Extended Frequency	4.9		5.925	GHz	
Nominal Operating Temperature	-10		70	۰C	
Operating Temperature	-40		85	۰C	
Power Supply V _{CC}	3.0	3.6	4.2	V	
Control Voltage-high	2.8	3.1	V_{CC}	V	PA_EN, C_RX, LNA_EN, V _{MODE}
Control Voltage-low		0	0.2	V	
Transmit (TX-ANT) High Power Mode					T = -10°C to +70°C, V _{CC} = 3.3V to 4.2V, 50% Duty Cycle unless otherwise noted
Output Power	17.0	18.0		dBm	$T = 25$ °C, $V_{CC} = 3.6V$
80MHZ 802.11ac Dynamic EVM		1.5	1.8	%	
•		-36.5	-35.0	dB	
Output Power	15.0	16.0		dBm	$T = -10^{\circ}C$ to $+70^{\circ}C$, $V_{CC} = 3.0V$ to $4.2V$
80MHZ 802.11ac Dynamic EVM		1.5	1.8	%	
		-36.5	-35.0	dB	
Output Power		19.0		dBm	$T = 25^{\circ}C$, $V_{CC} = 3.6V$
20/40MHz 802.11n Dynamic EVM		2.5	3	%	
		-32.0	-30.5	dB	
Output Power	16.5	17.5		dBm	$T = -10^{\circ}C$ to $+70^{\circ}C$, $V_{CC} = 3.0V$ to $4.2V$
20/40MHz 802.11n Dynamic EVM		2.5	3	%	
		-32.0	-30.5	dB	
40MHz 802.11n Spectral mask Output Power		20		dBm	$T = 25^{\circ}C$, $V_{CC} = 3.6V$
20/80MHz 802.11ac Spectral mask Output Power		21		dBm	
TX Port Return Loss	10	18		dB	
ANT Port Return Loss	10	18		dB	

Parameter Specification Unit	Specification			Heit	Condition	
	Unit	Condition				
Transmit (TX-ANT) High Power Mode (continued)					T = -10°C to +70°C, V _{CC} = 3.3V to 4.2V, 50% Duty Cycle unless otherwise noted	
Large Signal Gain	25	28		dB	$T = 25^{\circ}C$, $V_{CC} = 3.6V$	
	23	28		dB	$T = -10^{\circ}\text{C} \text{ to } +70^{\circ}\text{C}, V_{CC} = 3.0 \text{ to } 4.2\text{V}$	
Gain flatness over any 80MHz BW	-0.5		0.5	dB		
Gain flatness across band	-1		1	dB		
Operating Current		210	250	mA	$P_{OUT} = +17dBm, T = 25^{\circ}C, V_{CC} = 3.6V$	
		240	280	mA	$P_{OUT} = +19dBm, T = 25^{\circ}C, V_{CC} = 3.6V$	
		280		mA	$P_{OUT} = 21$ dBm, $T = 25$ °C, $V_{CC} = 3.6$ V	
Quiescent Current		150		mA		
PA_EN Current		70	150	uA		
Second Harmonic		-45	-30	dBm/MHz	$P_{OUT} = +21$ dBm, T = 25°C, $V_{CC} = 3.6$ V, 6Mbps 802.11a	
Third Harmonic		-45	-30	dBm/MHz		
Power Detector Voltage		0.27		V	P _{OUT} = 0dBm	
		0.81		V	$P_{OUT} = +17dBm$	
		0.98		V	$P_{OUT} = +21dBm$	
Variation from 0-360° load pull	-1.5		1.5	dB	3:1 VSWR	
ANT-RX Isolation (TX enabled and maximum power)		28		dB		
Transmit (TX-ANT) Low Power Mode					T= 25°C, V _{CC} = 3.6V,50% Duty Cycle unless otherwise noted	
Output Power		10.0		dBm	$T = 25$ °C, $V_{CC} = 3.6$ V	
40/80MHz 802.11ac Dynamic EVM		1.5	1.8	%		
		-36.5	-35.0	dB		
Output Power		12.0		dBm	$T = 25$ °C, $V_{CC} = 3.6$ V	
20MHz 802.11n Dynamic EVM		2.5	3.0	%		
		-32.0	-30.5	dB		
40MHz 802.11n Spectral mask Output Power		11.0		dBm	$T = 25^{\circ}C, V_{CC} = 3.6V$	
20/80MHz 802.11ac Spectral mask Output Power		12.0		dBm		
Power Detector Voltage		0.27		V	P _{OUT} = 0dBm	
		0.50		V	$P_{OUT} = +10dBm$	
		0.58		V	$P_{OUT} = +12dBm$	
80MHz 802.11ac Operating Current		150		mA	P _{OUT} = +10dBm	
20MHz 802.11n Operating Current		160		mA	$P_{OUT} = +12dBm$	
V _{MODE} Control Line Current		160	500	μΑ		
Gain	24	27		dB	P _{OUT} = +10dBm, 80MHz 802.11ac	
Receive (ANT-RX)-LNA On					T = +25°C, V _{CC} = 3.0 to 4.2V, C_RX=LNA_EN=High, PA_EN=Low, Unless otherwise noted.	
Gain	10	14	16	dB	$T = 25$ °C, $V_{CC} = 3.6$ V	
Gain flatness over any 80MHz BW	-0.5		0.5	dB		
Gain flatness across band	-1		1	dB		
Noise Figure		2.5	3	dB	1	

Devemeter	Specification			116-24	Our distant
Parameter	Min	Тур	Max	Unit	Condition
Rx Port Return Loss	9	12		dB	
ANT Port Return Loss	6	10		dB	
Nominal Input P1dB	-8	-4		dBm	$T = 25$ °C, $V_{CC} = 3.6$ V
Current Consumption		10	18	mA	
LNA_EN Control Current		130	200	μA	
LNA Turn On Time		400	600	nS	
Receive (ANT-RX)-Bypass Mode					T = +25°C, V _{CC} = 3.3to 4.2V, C_RX=LNA_EN=High, PA_EN=Low, Unless otherwise noted.
LNA Bypass Current		2.0	10	μA	
Nominal Insertion Loss		6	10	dB	$T = 25$ °C, $V_{CC} = 3.6$ V
RX Port Return Loss	10	20		dB	
ANT Port Return Loss	9	20		dB	
Nominal Input P1dB	15	20		dBm	$T = 25$ °C, $V_{CC} = 3.6$ V
General Specifications					
Control Line Impedance-PA_EN		75		kΩ	
Control Line Impedance-LNA_EN		78		kΩ	
Control Line Impedance-C_RX		27		МΩ	
Switch Control Current – High - Each Line		5	100	μΑ	
Switch Control Current – Low - Each Line		0.5	10	μΑ	
Switching Speed		100	500	ns	
ESD – Human Body Model		1000		V	
ESD – Charge Device Model		500		V	
PA Turn-on Time		200	500	ns	10% to 90%
PA Stability		+20		dBm	No spurious above -41.25dBm/MHz up to 4:1 VSWR
Maximum Input Power			12	dBm	Into 50Ω , $V_{CC} = 3.3V$, $25^{\circ}C$
			12	dBm	6:1 VSWR, V _{CC} = 3.3V, 25°C
			5	dBm	10:1 VSWR, V _{CC} = 3.3V, 25°C
Ruggedness			10:1	VSWR	At typical operating conditions
Leakage Current		2	10	uA	V _{CC} = 4.8V, T = 25°C, RF OFF, All control lines floating

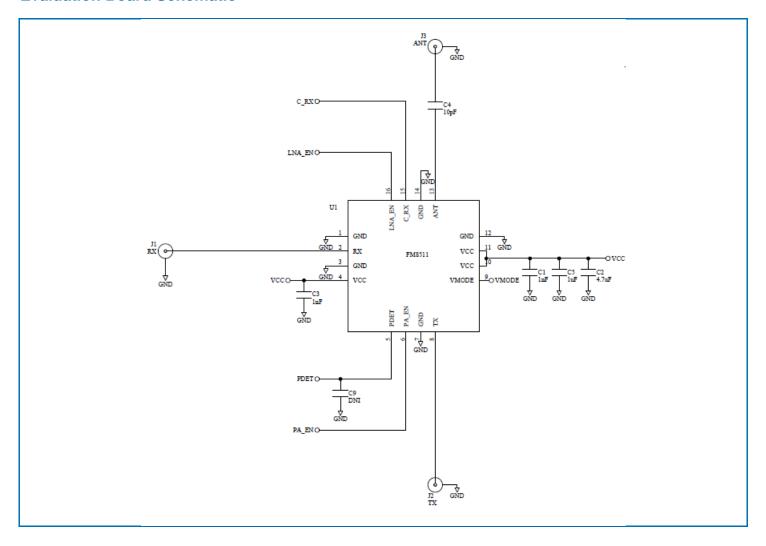

Switch Control Logic Truth Table

Operating Mode	PA_EN	LNA_EN	C_RX	Vmode
Standby	Low	Low	Low	Low
802.11a/n/ac TX High Power	High	Low	Low	Low
802.11a/n/ac TX Low Power	High	Low	Low	High
802.11a/n/ac RX Gain	Low	High	High	Low
802.11a/n/ac RX Bypass	Low	Low	High	Low

Notes:

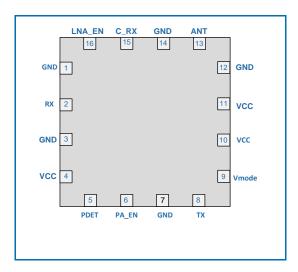
- PA_EN and TX switch control are tied together internally.
- High = 2.8 to V_{CC}. Low = 0V to 0.2V

Timing Diagram

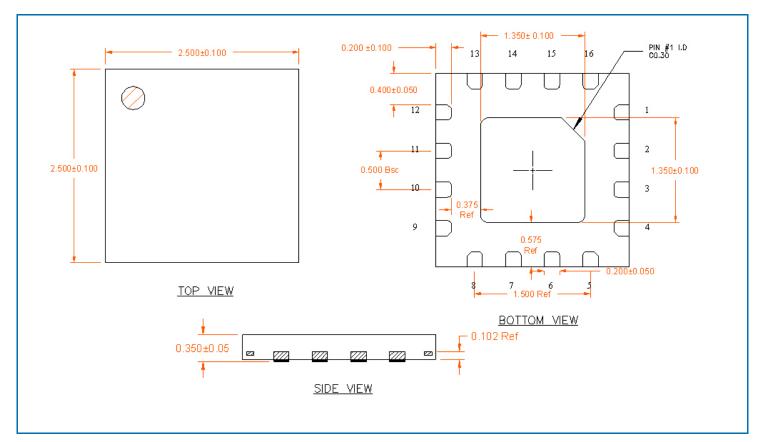


RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421 For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com.

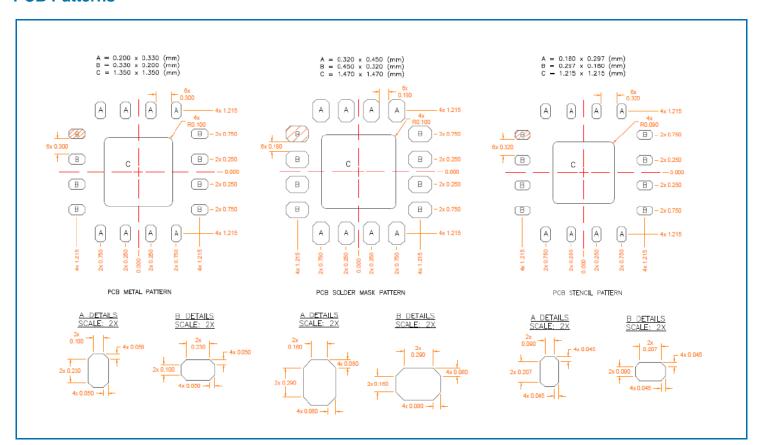
DS140711



Evaluation Board Schematic



Pin Out



Package Drawing

PCB Patterns

Notes:

1. Thermal vias for center slug "C" should be incorporated into the PCB design. The number and size of thermal vias will depend on the application, power, dissipation and electrical requirements. Example of the number and size of vias can be found on the RFMD evaluation board layout (gerber files are available upon request)

PRELIMINARY

Pin Names and Descriptions

Pin	Name	Description					
1	GND	This pin is not connected internally and can be left floating or connected to ground.					
2	RX	RF output port for the 802.11a/n/ac LNA. This port is matched to 50Ω and DC blocked internally.					
3	GND	This pin is not connected internally and can be left floating or connected to ground.					
4	VCC	Supply voltage for the LNA and PA Regulator. See applications schematic for biasing and bypassing components.					
5	PDET	Power detector voltage for the TX path. May need external series R/shunt C to adjust voltage level and to filter RF noise.					
6	PA_EN	Control voltage for the PA and TX switch. See truth table for proper settings.					
7	GND	This pin is not connected internally and can be left floating or connected to ground.					
8	TX	RF input port for the 802.11a/n/ac PA. Input is matched to 50Ω and DC blocked internally					
9	VMODE	High/Low power mode control signal. V _{MODE} can be low or floating for nominal conditions (high power mode). Applying 2.8V or greater to this pin enables low power mode.					
10	VCC	Supply voltage for the first and second stage of the PA. See applications schematic for biasing and bypassing components.					
11	VCC	Supply voltage for the final stage of the PA. See applications schematic for biasing and bypassing components.					
12	GND	This pin is not connected internally and can be left floating or connected to ground.					
13	ANT	RF bidirectional antenna port matched to 50Ω. An External DC block is required					
14	GND	This pin is not connected internally and can be left floating or connected to ground.					
15	C_RX	Receive switch control pin. See switch truth table for proper level.					
16	LNA_EN	Control voltage for the LNA. When this pin is set to a LOW logic state, the bypass mode is enabled.					
Pkg Base	GND	Ground connection. The backside of the package should be connected to the ground plane through a short path, i.e., PCB vias under the device are recommended.					

9 of 9