

# **RF Power GaN Transistor**

This 56 W asymmetrical Doherty RF power GaN transistor is designed for cellular base station applications requiring very wide instantaneous bandwidth capability covering the frequency range of 2496 to 2690 MHz.

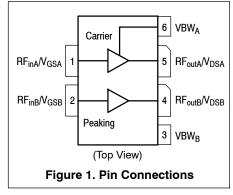
This part is characterized and performance is guaranteed for applications operating in the 2496 to 2690 MHz band. There is no guarantee of performance when this part is used in applications designed outside of these frequencies.

#### 2600 MHz

• Typical Doherty Single-Carrier W-CDMA Characterization Performance:  $V_{DD} = 48$  Vdc,  $I_{DQA} = 350$  mA,  $V_{GSB} = -5.0$  Vdc,  $P_{out} = 56$  W Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. (1)

| Frequency | G <sub>ps</sub><br>(dB) | η <sub>D</sub><br>(%) | P3dB<br>(dBm) <sup>(2)</sup> | ACPR<br>(dBc) |
|-----------|-------------------------|-----------------------|------------------------------|---------------|
| 2496 MHz  | 14.0                    | 46.3                  | 56.6                         | -35.4         |
| 2590 MHz  | 14.5                    | 45.1                  | 57.1                         | -36.6         |
| 2690 MHz  | 14.4                    | 47.4                  | 56.0                         | -33.2         |

- 1. All data measured in fixture with device soldered to heatsink.
- 2. Data measured at pulsed CW, 10 µsec(on), 10% duty cycle.


#### **Features**

- High terminal impedances for optimal broadband performance
- · Advanced high performance in-package Doherty
- · Improved linearized error vector magnitude with next generation signal
- Able to withstand extremely high output VSWR and broadband operating conditions

# A3G26H501W17S

### 2496-2690 MHz, 56 W AVG., 48 V AIRFAST RF POWER GaN TRANSISTOR







## **Table 1. Maximum Ratings**

| Rating                                                                       | Symbol            | Value       | Unit |
|------------------------------------------------------------------------------|-------------------|-------------|------|
| Drain-Source Voltage                                                         | V <sub>DSS</sub>  | 125         | Vdc  |
| Gate-Source Voltage                                                          | $V_{GS}$          | -8, 0       | Vdc  |
| Operating Voltage                                                            | V <sub>DD</sub>   | 0 to +55    | Vdc  |
| Maximum Forward Gate Current, I <sub>G (A+B)</sub> , @ T <sub>C</sub> = 25°C | I <sub>GMAX</sub> | 66          | mA   |
| Storage Temperature Range                                                    | T <sub>stg</sub>  | -65 to +150 | °C   |
| Case Operating Temperature Range                                             | T <sub>C</sub>    | -55 to +150 | °C   |
| Operating Active Die Surface Temperature Range                               | T <sub>J</sub>    | -55 to +225 | °C   |
| Maximum Channel Temperature (1)                                              | T <sub>CH</sub>   | 275         | °C   |

#### **Table 2. Thermal Characteristics**

| Characteristic                                                                                                      | Symbol                  | Value    | Unit |
|---------------------------------------------------------------------------------------------------------------------|-------------------------|----------|------|
| Thermal Resistance by Infrared Measurement, Active Die Surface-to-Case Case Temperature 93°C, P <sub>D</sub> = 80 W | R <sub>θJC</sub> (IR)   | 0.90 (2) | °C/W |
| Thermal Resistance by Finite Element Analysis, Channel-to-Case<br>Case Temperature 90°C, P <sub>D</sub> = 80 W      | R <sub>0CHC</sub> (FEA) | 1.23 (3) | °C/W |

#### **Table 3. ESD Protection Characteristics**

| Test Methodology                      | Class |
|---------------------------------------|-------|
| Human Body Model (per JS-001-2017)    | 1C    |
| Charge Device Model (per JS-002-2014) | СЗ    |

# Table 4. Electrical Characteristics (T<sub>A</sub> = 25°C unless otherwise noted)

| ,                                                                                                                                    |                    |                      |            |      |      |      |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------|------------|------|------|------|
| Characteristic                                                                                                                       |                    | Symbol               | Min        | Тур  | Max  | Unit |
| Off Characteristics <sup>(4)</sup>                                                                                                   |                    |                      |            |      |      |      |
| Drain-Source Breakdown Voltage $(V_{GS} = -8 \text{ Vdc}, I_D = 24 \text{ mAdc})$ $(V_{GS} = -8 \text{ Vdc}, I_D = 42 \text{ mAdc})$ | Carrier<br>Peaking | V <sub>(BR)DSS</sub> | 150<br>150 | _    | _    | Vdc  |
| On Characteristics — Side A, Carrier                                                                                                 |                    |                      |            |      |      |      |
| Gate Threshold Voltage<br>(V <sub>DS</sub> = 10 Vdc, I <sub>D</sub> = 20 mAdc)                                                       |                    | V <sub>GS(th)</sub>  | -3.5       | -2.8 | -2.3 | Vdc  |
| Gate Quiescent Voltage<br>(V <sub>DD</sub> = 48 Vdc, I <sub>DA</sub> = 350 mAdc, Measured in Functi                                  | onal Test)         | V <sub>GSA(Q)</sub>  | -3.1       | -2.7 | -2.4 | Vdc  |
| Gate-Source Leakage Current<br>(V <sub>DS</sub> = 150 Vdc, V <sub>GS</sub> = -8 Vdc)                                                 |                    | I <sub>GSS</sub>     | -9.9       | _    | _    | mAdc |
| On Characteristics — Side B, Peaking                                                                                                 |                    |                      |            |      |      |      |
| Gate Threshold Voltage<br>(V <sub>DS</sub> = 10 Vdc, I <sub>D</sub> = 20 mAdc)                                                       |                    | V <sub>GS(th)</sub>  | -3.8       | -3.3 | -2.3 | Vdc  |
| Gate-Source Leakage Current<br>(V <sub>DS</sub> = 150 Vdc, V <sub>GS</sub> = -8 Vdc)                                                 |                    | I <sub>GSS</sub>     | -9.9       | _    | _    | mAdc |

- Reliability tests were conducted at 225°C. Operations with T<sub>CH</sub> at 275°C will reduce median time to failure.
   Refer to AN1955, *Thermal Measurement Methodology of RF Power Amplifiers*. Go to <a href="http://www.nxp.com/RF">http://www.nxp.com/RF</a> and search for AN1955.
- 3. R<sub>0CHC</sub> (FEA) must be used for purposes related to reliability and limitations on maximum channel temperature. MTTF may be estimated by the expression MTTF (hours) =  $10^{[A + B/(T + 273)]}$ , where T is the channel temperature in degrees Celsius, A = -11.1 and B = 8366.
- 4. Each side of device measured separately.

(continued)

#### Table 4. Electrical Characteristics (T<sub>A</sub> = 25°C unless otherwise noted) (continued)

| Characteristic | Symbol | Min | Тур | Max | Unit |
|----------------|--------|-----|-----|-----|------|
|----------------|--------|-----|-----|-----|------|

Functional Tests  $^{(1)}$  (In NXP Doherty Production Test Fixture, 50 ohm system)  $V_{DD} = 48$  Vdc,  $I_{DQA} = 350$  mA,  $V_{GSB} = -5$  Vdc,  $P_{out} = 56$  W Avg., f = 2690 MHz, Single-Carrier W-CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @  $\pm 5$  MHz Offset. [See note on correct biasing sequence.]

| Power Gain                                    | G <sub>ps</sub> | 12.7 | 13.7  | 15.7  | dB  |
|-----------------------------------------------|-----------------|------|-------|-------|-----|
| Drain Efficiency                              | $\eta_{D}$      | 35.5 | 40.7  | _     | %   |
| P <sub>out</sub> @ 3 dB Compression Point, CW | P3dB            | 55.5 | 56.4  | _     | dBm |
| Adjacent Channel Power Ratio                  | ACPR            | _    | -33.2 | -29.0 | dBc |

Wideband Ruggedness (In NXP Doherty Production Test Fixture, 50 ohm system)  $I_{DQA} = 350$  mA,  $V_{GSB} = -5$  Vdc, f = 2590 MHz, Additive White Gaussian Noise (AWGN) with 10 dB PAR

| ISBW of 400 MHz at 55 Vdc, 194 W Avg. Modulated Output Power | No Device Degradation |
|--------------------------------------------------------------|-----------------------|
| (8 dB Input Overdrive from 56 W Avg. Modulated Output Power) |                       |

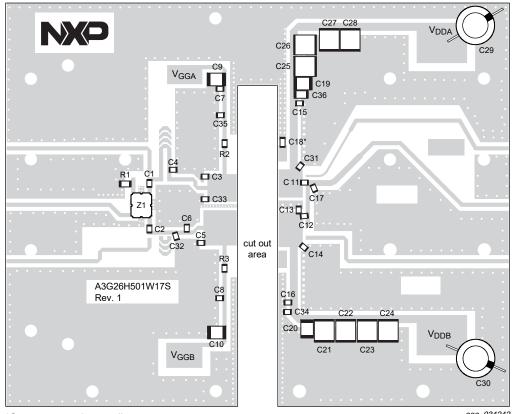
**Typical Performance** (In NXP Doherty Production Test Fixture, 50 ohm system)  $V_{DD} = 48$  Vdc,  $I_{DQA} = 350$  mA,  $V_{GSB} = -5$  Vdc, 2496–2690 MHz Bandwidth

| P <sub>out</sub> @ 3 dB Compression Point (2)                                                   | P3dB               | _ | 500   | = | W     |
|-------------------------------------------------------------------------------------------------|--------------------|---|-------|---|-------|
| AM/PM (Maximum value measured at the P3dB compression point across the 2496–2690 MHz bandwidth) | Φ                  | _ | -12   | _ | 0     |
| VBW Resonance Point (IMD Third Order Intermodulation Inflection Point)                          | VBW <sub>res</sub> |   | 160   | _ | MHz   |
| Gain Flatness in 194 MHz Bandwidth @ Pout = 56 W Avg.                                           | G <sub>F</sub>     | _ | 0.4   | _ | dB    |
| Gain Variation over Temperature<br>(-40°C to +85°C)                                             | ΔG                 |   | 0.018 | _ | dB/°C |
| Output Power Variation over Temperature (–40°C to +85°C)                                        | ΔP1dB              | _ | 0.008 |   | dB/°C |

#### **Table 5. Ordering Information**

| Device          | Tape and Reel Information                             | Package      |
|-----------------|-------------------------------------------------------|--------------|
| A3G26H501W17SR3 | R3 Suffix = 250 Units, 44 mm Tape Width, 13-inch Reel | NI-780S-4S2S |

- 1. Part internally input matched.
- 2. P3dB = P<sub>avg</sub> + 7.0 dB where P<sub>avg</sub> is the average output power measured using an unclipped W-CDMA single-carrier input signal where output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF.


## NOTE: Correct Biasing Sequence for GaN Depletion Mode Transistors

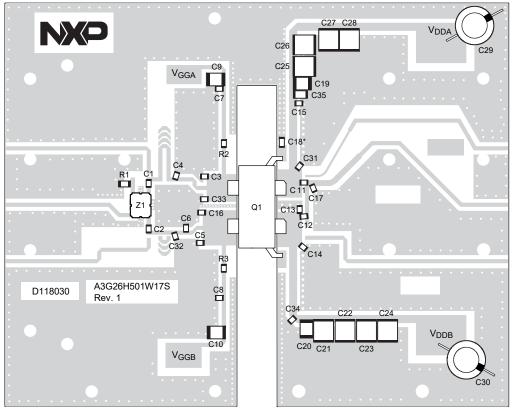
#### Turning the device ON

- 1. Set  $V_{GS}$  to  $-5\ V$
- 2. Turn on V<sub>DS</sub> to nominal supply voltage (48 V)
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

### Turning the device OFF

- 1. Turn RF power off
- 2. Reduce  $V_{GS}$  down to  $-5\ V$
- 3. Reduce  $V_{DS}$  down to 0 V (Adequate time must be allowed for  $V_{DS}$  to reduce to 0 V to prevent severe damage to device.)
- 4. Turn off V<sub>GS</sub>




\*C18 is mounted vertically.

aaa-034242

Figure 2. A3G26H501W17S Production Test Circuit Component Layout

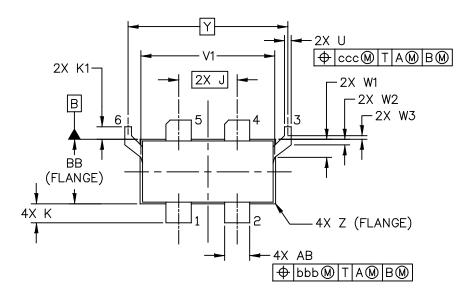
Table 6. A3G26H501W17S Production Test Circuit Component Designations and Values

| Part                                   | Description                                  | Part Number        | Manufacturer |
|----------------------------------------|----------------------------------------------|--------------------|--------------|
| C1, C2, C7, C8, C15, C16, C35          | 6.8 pF Chip Capacitor                        | GQM2195C2E6R8BB12D | Murata       |
| C3, C33                                | 0.8 pF Chip Capacitor                        | GQM2195C2ER80BB12D | Murata       |
| C4                                     | 1.2 pF Chip Capacitor                        | GQM2195C2E1R2BB12D | Murata       |
| C5                                     | 1.6 pF Chip Capacitor                        | GQM2195C2E1R6BB12D | Murata       |
| C6                                     | 1.5 pF Chip Capacitor                        | GQM2195C2E1R5BB12D | Murata       |
| C9, C10                                | 2.2 μF Chip Capacitor                        | GRM31CR71H225KA88L | Murata       |
| C11                                    | 3.9 pF Chip Capacitor                        | GQM2195C2E3R9BB12D | Murata       |
| C12                                    | 2.2 pF Chip Capacitor                        | GQM2195C2E2R2BB12D | Murata       |
| C13                                    | 0.6 pF Chip Capacitor                        | GQM2195C2ER60BB12D | Murata       |
| C14                                    | 0.5 pF Chip Capacitor                        | GQM2195C2ER50BB12D | Murata       |
| C17, C31                               | 0.2 pF Chip Capacitor                        | GQM2195C2ER20BB12D | Murata       |
| C18, C19, C20                          | 4.7 μF Chip Capacitor                        | C4532X7S2A475M     | TDK          |
| C21, C22, C23, C24, C25, C26, C27, C28 | 15 μF Chip Capacitor                         | C5750X7S2A156M     | TDK          |
| C29, C30                               | 220 μF, 100 V Electrolytic Capacitor         | MCGPR100V227M16X26 | Multicomp    |
| C32                                    | 1.0 pF Chip Capacitor                        | GQM2195C2E1R0BB12D | Murata       |
| C34                                    | 8.2 pF Chip Capacitor                        | GQM2195C2E8R2BB12D | Murata       |
| C36                                    | 15 nF Chip Capacitor                         | C3225CH2A153J      | TDK          |
| R1                                     | 50 Ω, 10 W Termination Chip Resistor         | 060120A25X50-2     | Anaren       |
| R2, R3                                 | 3.3 Ω, 1/4 W Chip Resistor                   | CRCW08053R30JNEA   | Vishay       |
| Z1                                     | 2300–2700 MHz Band, 5 dB Directional Coupler | X3C25P1-05S        | Anaren       |
| PCB                                    | Rogers RO3035, 0.020", ε <sub>r</sub> = 3.6  | _                  | MTL          |



\*C18 is mounted vertically.

aaa-034243


Note: All data measured in fixture with device soldered to heatsink.

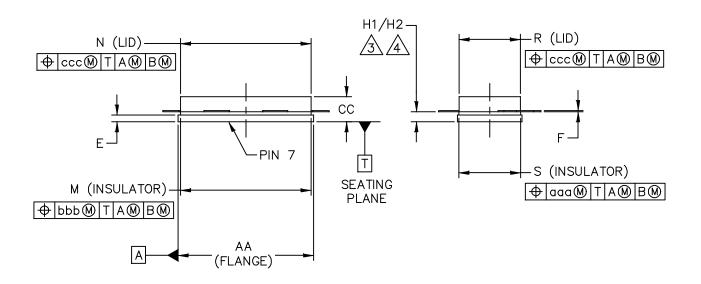

Figure 3. A3G26H501W17S Characterization Test Circuit Component Layout

Table 7. A3G26H501W17S Characterization Test Circuit Component Designations and Values

| Part                                   | Description                                  | Part Number        | Manufacturer |
|----------------------------------------|----------------------------------------------|--------------------|--------------|
| C1, C2, C7, C8, C15                    | 6.8 pF Chip Capacitor                        | GQM2195C2E6R8BB12D | Murata       |
| C3, C33                                | 0.8 pF Chip Capacitor                        | GQM2195C2ER80BB12D | Murata       |
| C4                                     | 1.2 pF Chip Capacitor                        | GQM2195C2E1R2BB12D | Murata       |
| C5                                     | 1.6 pF Chip Capacitor                        | GQM2195C2E1R6BB12D | Murata       |
| C6                                     | 1.5 pF Chip Capacitor                        | GQM2195C2E1R5BB12D | Murata       |
| C9, C10                                | 2.2 μF Chip Capacitor                        | GRM31CR71H225KA88L | Murata       |
| C11                                    | 3.9 pF Chip Capacitor                        | GQM2195C2E3R9BB12D | Murata       |
| C12                                    | 5.6 pF Chip Capacitor                        | GQM2195C2E2R2BB12D | Murata       |
| C13                                    | 0.6 pF Chip Capacitor                        | GQM2195C2ER60BB12D | Murata       |
| C14                                    | 0.5 pF Chip Capacitor                        | GQM2195C2ER50BB12D | Murata       |
| C16                                    | 0.3 pF Chip Capacitor                        | GQM2195C2ER30BB12D | Murata       |
| C17, C31                               | 0.2 pF Chip Capacitor                        | GQM2195C2ER20BB12D | Murata       |
| C18, C19, C20                          | 4.7 μF Chip Capacitor                        | C4532X7S2A475M     | TDK          |
| C21, C22, C23, C24, C25, C26, C27, C28 | 15 μF Chip Capacitor                         | C5750X7S2A156M     | TDK          |
| C29, 30                                | 220 μF, 100 V Electrolytic Capacitor         | MCGPR100V227M16X26 | Multicomp    |
| C32                                    | 1.0 pF Chip Capacitor                        | GQM2195C2E1R0BB12D | Murata       |
| C34                                    | 8.2 pF Chip Capacitor                        | GQM2195C2E8R2BB12D | Murata       |
| C35                                    | 15 nF Chip Capacitor                         | C3225CH2A153J      | TDK          |
| Q1                                     | RF Power LDMOS Transistor                    | A3G26H501W17S      | NXP          |
| R1                                     | 50 $\Omega$ , 10 W Termination Chip Resistor | 060120A25X50-2     | Anaren       |
| R2, R3                                 | 3.3 Ω, 1/4 W Chip Resistor                   | CRCW08053R30JNEA   | Vishay       |
| Z1                                     | 2300-2700 MHz Band, 5 dB Directional Coupler | X3C25P1-05S        | Anaren       |
| PCB                                    | Rogers RO3035, 0.020", $\epsilon_{r}$ = 3.6  | D118030            | MTL          |

# **PACKAGE DIMENSIONS**





| © NXP SEMICONDUCTORS N.V.<br>ALL RIGHTS RESERVED | MECHANICAL OUTLINE |             | PRINT VERSION NOT TO SCALE |             |  |  |
|--------------------------------------------------|--------------------|-------------|----------------------------|-------------|--|--|
| TITLE:                                           |                    | DOCUMEN     | NT NO: 98ASA01208D         | REV: 0      |  |  |
| NI-780S-4S2S                                     |                    |             | STANDARD: NON-JEDEC        |             |  |  |
|                                                  |                    | S0T1799-6 1 |                            | 14 AUG 2018 |  |  |

#### NOTES:

- 1. CONTROLLING DIMENSION: INCH.
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.

<u>/3.\</u>

DIMENSIONS H1 AND H2 ARE MEASURED .030 INCH (0.762 MM) AWAY FROM FLANGE PARALLEL TO DATUM B TO CLEAR EPOXY FLOW OUT. H1 APPLIES TO PINS 1, 2, 4 & 5. H2 APPLIES TO PINS 3 & 6.

|     | INCH     |       | MILLIMETER |       |     | INCH     |       | MILLIMETER |       |
|-----|----------|-------|------------|-------|-----|----------|-------|------------|-------|
| DIM | MIN      | MAX   | MIN        | MAX   | DIM | MIN      | MAX   | MIN        | MAX   |
| AA  | .805     | .815  | 20.45      | 20.70 | R   | .365     | .375  | 9.27       | 9.53  |
| BB  | .380     | .390  | 9.65       | 9.91  | S   | .365     | .375  | 9.27       | 9.53  |
| CC  | .125     | .170  | 3.18       | 4.32  | U   | .035     | .045  | 0.89       | 1.14  |
| Ε   | .035     | .045  | 0.89       | 1.14  | V1  | .795     | .805  | 20.19      | 20.45 |
| F   | .004     | .007  | 0.10       | 0.18  | W1  | .0975    | .1175 | 2.48       | 2.98  |
| H1  | .057     | .067  | 1.45       | 1.70  | W2  | .0225    | .0425 | 0.57       | 1.08  |
| H2  | .054     | .070  | 1.37       | 1.78  | W3  | .0125    | .0325 | 0.32       | 0.83  |
| J   | .350 BSC |       | 8.89 BSC   |       | Y   | .956 BSC |       | 24.28 BSC  |       |
| K   | .0995    | .1295 | 2.53       | 3.29  | Z   | R.000    | R.040 | R0.00      | R1.02 |
| K1  | .070     | .090  | 1.78       | 2.29  | AB  | .145     | .155  | 3.68       | 3.94  |
| М   | .774     | .786  | 19.66      | 19.96 | aaa | .005     |       | 0.13       |       |
| Ν   | .772     | .788  | 19.61      | 20.02 | bbb | .010     |       | 0.25       |       |
|     |          |       |            |       | ccc | .015     |       | 0.38       |       |

NXP SEMICONDUCTORS N.V.
ALL RIGHTS RESERVED

MECHANICAL OUTLINE PRINT VERSION NOT TO SCALE

DOCUMENT NO: 98ASA01208D REV: 0

STANDARD: NON-JEDEC

SOT1799-6

14 AUG 2018

# PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following resources to aid your design process.

## **Application Notes**

- AN1908: Solder Reflow Attach Method for High Power RF Devices in Air Cavity Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers

#### **Engineering Bulletins**

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

#### **Software**

• .s2p File

## **Development Tools**

· Printed Circuit Boards

# To Download Resources Specific to a Given Part Number:

- 1. Go to <a href="http://www.nxp.com/RF">http://www.nxp.com/RF</a>
- 2. Search by part number
- 3. Click part number link
- 4. Choose the desired resource from the drop down menu

#### **REVISION HISTORY**

The following table summarizes revisions to this document.

| Revision | Date      | Description                   |  |  |  |
|----------|-----------|-------------------------------|--|--|--|
| 0        | June 2019 | Initial release of data sheet |  |  |  |

# How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: <a href="https://nxp.com/SalesTermsandConditions">nxp.com/SalesTermsandConditions</a>.

NXP, the NXP logo and Airfast are trademarks of NXP B.V. All other product or service names are the property of their respective owners.

© 2019 NXP B.V.

Document Number: A3G26H501W17S Rev. 0, 06/2019