

CMPA0060025D

25 W, 20 MHz - 6.0 GHz, GaN MMIC, Power Amplifier

Cree's CMPA0060025D is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN has superior properties compared to silicon or gallium arsenide, including higher breakdown voltage, higher saturated electron drift velocity and higher thermal conductivity. GaN HEMTs also offer greater power density and wider bandwidths compared to Si and GaAs transistors. This MMIC enables very wide bandwidths.

PN: CMPA0060025D

Typical Performance Over 1.0-6.0 GHz (T_c = 25°C)

Parameter	1.0 GHz	2.0 GHz	3.0 GHz	4.0 GHz	5.0 GHz	6.0 GHz	Units
Gain	18.0	18.0	18.5	18.0	17.0	17.0	dB
Output Power @ P _{IN} 32 dBm	34	38	42	29	30	31	W
Associated Gain @ P _{IN} 32 dBm	13.3	13.9	14.2	12.6	13.1	12.9	dB
PAE @ P _{IN} 32 dBm	54	45	46	33	34	33	%

Note: V_{DD} = 50 V, I_{D} = 500 mA

Features

- 18 dB Small Signal Gain
- 30 W Typical P_{SAT}
- Operation up to 50 V
- · High Breakdown Voltage
- High Temperature Operation
- Size 0.157 x 0.094 x 0.004 inches

Applications

- Ultra Broadband Amplifiers
- Test Instrumentation
- EMC Amplifier Drivers

Absolute Maximum Ratings (not simultaneous) at 25°C

Parameter	Symbol	Rating	Units	Conditions
Drain-source Voltage	V _{DSS}	84	VDC	
Gate-source Voltage	$V_{\sf GS}$	-10, +2	VDC	
Storage Temperature	T _{STG}	-65, +150	°C	
Operating Junction Temperature	T _J	225	°C	
Maximum Forward Gate Current	I _{GMAX}	12	mA	
Thermal Resistance, Junction to Case (packaged) ¹	$R_{\scriptscriptstyle{\thetaJC}}$	2.32	°C/W	85°C
Thermal Resistance (die only) 1	$R_{_{\theta JC}}$	1.40	°C/W	85°C
Input Power ²	P _{IN}	36	dBm	

Note¹ Eutectic die attach using 80/20 AuSn solder mounted to a 10 mil thick CuMo carrier.

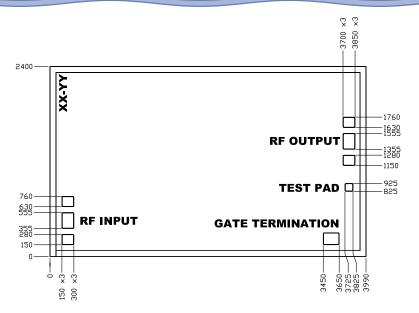
Note² Limit for internal resistor only. Thermal dissipation may be exceeded at this level.

Electrical Characteristics (Frequency = 20 MHz to 6.0 GHz unless otherwise stated; T_c = 25°C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics						
Gate Threshold Voltage ¹	$V_{(GS)TH}$	-3.8	-3.0	-2.7	V	$V_{DS} = 20 \text{ V, } \Delta I_{D} = 6 \text{ mA}$
Gate Quiescent Voltage	$V_{(GS)Q}$	-	-2.7	-	VDC	$V_{DD} = 50 \text{ V, } I_{DQ} = 500 \text{ mA}$
Saturated Drain Current ²	I _{DS}	-	12	-	А	V _{DS} = 12.0 V, V _{GS} = 2.0 V
RF Characteristics						
Small Signal Gain	S21	-	18	-	dB	V _{DD} = 50 V, I _{DQ} = 500 mA
Input Return Loss	S11	-	9	-	dB	$V_{DD} = 50 \text{ V, } I_{DQ} = 500 \text{ mA}$
Output Return Loss	S22	-	7	-	dB	V _{DD} = 50 V, I _{DQ} = 500 mA
Output Power, 1	P _{out1}	17	29	-	W	$V_{DD} = 50 \text{ V, } I_{DQ} = 500 \text{ mA,}$ $P_{IN} = 32 \text{ dBm, Freq} = 4.0 \text{ GHz}$
Output Power, 2	P _{OUT2}	23	30	-	W	$V_{DD} = 50 \text{ V, } I_{DQ} = 500 \text{ mA,}$ $P_{IN} = 32 \text{ dBm, Freq} = 5.0 \text{ GHz}$
Output Power, 3	P _{out3}	23	31	-	W	$V_{DD} = 50 \text{ V, } I_{DQ} = 500 \text{ mA,}$ $P_{IN} = 32 \text{ dBm, Freq} = 6.0 \text{ GHz}$
Power Added Efficiency, 1	PAE1	18	33	-	%	$V_{DD} = 50 \text{ V, } I_{DQ} = 500 \text{ mA,}$ $P_{IN} = 32 \text{ dBm, Freq} = 4.0 \text{ GHz}$
Power Added Efficiency, 2	PAE2	23	34	-	%	$V_{DD} = 50 \text{ V, } I_{DQ} = 500 \text{ mA,}$ $P_{IN} = 32 \text{ dBm, Freq} = 5.0 \text{ GHz}$
Power Added Efficiency, 3	PAE3	22	33	-	%	$V_{DD} = 50 \text{ V, } I_{DQ} = 500 \text{ mA,}$ $P_{IN} = 32 \text{ dBm, Freq} = 6.0 \text{ GHz}$
Power Gain	G_{p}	-	13	-	dB	$V_{DD} = 50 \text{ V, } I_{DQ} = 500 \text{ mA,}$ $P_{IN} = 32 \text{ dBm}$
Output Mismatch Stress	VSWR	-	-	5:1	Ψ	No damage at all phase angles, $V_{DD} = 50 \text{ V, } I_{DQ} = 500 \text{ mA,}$ $P_{IN} = 32 \text{ dBm}$

Notes:

¹ The device will draw approximately 55-70 mA at pinch off due to the internal circuit structure.


² Scaled from PCM data.

 $^{^{3}}$ All data pulsed with Pulse Width at 10 $\mu\text{S},$ 1% Duty Cycle

³ Data measured into a 15 dB output load with a maximum return loss.

Die Dimensions (units in microns)

Overall die size 3990 x 2400 (+0/-50) microns, die thickness 100 (+/-10) micron. All Gate and Drain pads must be wire bonded for electrical connection.

Pad Number	Function	Description	Pad Size (microns)
1	RF IN ¹	RF-Input pad. Matched to 50 ohm. Requires gate control from an external bias \neg T from -2.3 V to -3.8 V.	150 x 200
2	Gate Termination	Off Chip termination for the Gate. It needs to be DC-blocked .	200 x 150
3	RF OUT ¹	RF-Output pad. Matched to 50 ohm. Requires Drain supply from an external bias \neg T up to 50 V , 2.0 A	150 x 200

Notes:

Die Assembly Notes:

- Recommended solder is AuSn (80/20) solder. Refer to Cree's website for the Eutectic Die Bond Procedure application note at <u>www.cree.com/RF/Document-Library</u>
- Vacuum collet is the preferred method of pick-up.
- The backside of the die is the Source (ground) contact.
- Die back side gold plating is 5 microns thick minimum.
- Thermosonic ball or wedge bonding are the preferred connection methods.
- · Gold wire must be used for connections.
- Test pad must be bonded to Ground.
- Use the die label (XX-YY) for correct orientation.

¹ The RF In and Out pads have a ground-signal-ground configuration with a pitch of 75 microns.

Functional Block Diagram

This device employs a wideband amplifier topology. It has an internal termination for the Gate, which works well over 1.0-6.0 GHz. For operation below 1.0 GHz an external termination is required. This termination needs to be DC-blocked and suitable to withstand up to 2 W of RF power. (Refer to the reference design section for the LF-termination in this data sheet for more details). The circuits also require external wideband Bias –T's to supply voltage to the Gate and Drain. The Bias-T at the Drain needs to be designed to handle 50 V and up to 2.0 A.

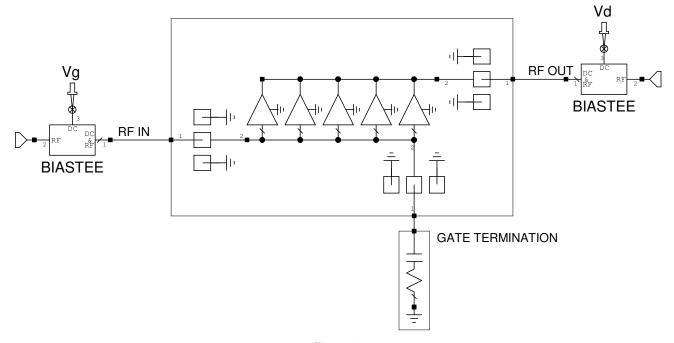
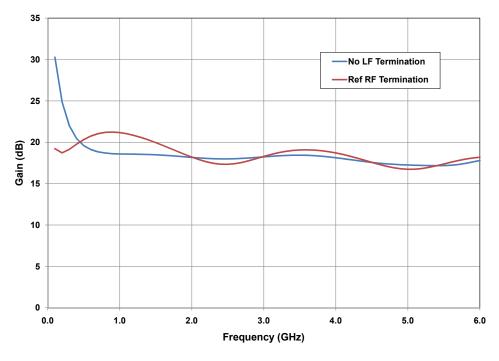



Figure 1.

External Termination Reference Design

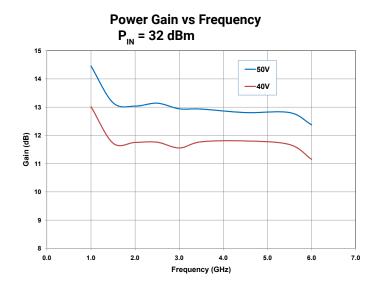
The following is a plot of the gain of the die with and without an RC reference circuit.

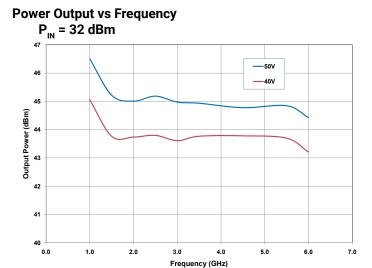
Notes:

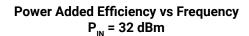
RC Reference Circuit

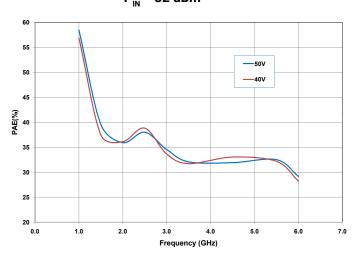
The reference circuit is a series capacitor and resistor as shown below.

Figure 2.

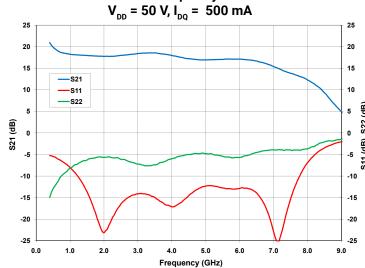

The resistor needs to handle 2.0 W.


¹ An off chip termination is needed to reduce the high gain peak at low frequencies.


² The off chip termination should be designed to minimize the impact on the MMIC's performance at higher frequencies.



Typical Performance



Gain and Return Losses vs Frequency

Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Test Methodology
Human Body Model	НВМ	1A (> 250 V)	JEDEC JESD22 A114-D
Charge Device Model	CDM	II (200 < 500 V)	JEDEC JESD22 C101-C

Product Ordering Information

Order Number	Description	Unit of Measure
CMPA0060025D	GaN MMIC Power Amplifier Bare Die	Each

Disclaimer

Specifications are subject to change without notice. Cree, Inc. believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Cree for its use or for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Cree. Cree makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. These values can and do vary in different applications, and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Cree products are not designed, intended, or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Cree product could result in personal injury or death, or in applications for the planning, construction, maintenance or direct operation of a nuclear facility. CREE and the CREE logo are registered trademarks of Cree, Inc.

For more information, please contact:

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 www.cree.com/RF

Sarah Miller Marketing Cree, RF Components 1.919.407.5302

Ryan Baker Marketing & Sales Cree, RF Components 1.919.407.7816

Tom Dekker Sales Director Cree, RF Components 1.919.407.5639