嗨,欢迎来到兆亿微波官方商城!
服务热线: 010-62975458  17600099251
购物车图片 购物车 ( )
全部商品分类

超宽带脉冲环境下射频滤波器非线性响应分析

2021/6/23 17:53:14
浏览次数: 6

实验研究发现,射频滤波器在连续波和超宽带脉冲条件下其带外传输性能基本一致,但在带内某些频段,超宽带脉冲环境下滤波器的传递函数远大于1。此外,滤波器在超宽带脉冲下的时域响应还出现了脉冲振荡特征。针对这些现象,从滤波器的非线性无源互调和Q值效应的两个方面,分析了滤波器在超宽带脉冲作用下的响应机理,初步解释了上述现象。


此外,通过不同辐射场强下的测量结果可知,滤波器无源互调还出现了非线性现象,使得测量结果的普适性受到一定限制。基于传递函数的预测结果表明,连续波测量结果的预测波形无论是从能量上还是从峰值功率上都明显小于实测结果。这些都反映出,滤波器在超宽带脉冲环境下的响应机理与在连续波环境下的响应机理明显不同,其预测结果也差异较大。也就是说,连续波测量结果不可用于超宽带脉冲的效应分析和评估。


外部辐射的电磁环境可通过“前门”和“后门”耦合进入电子系统,使其发生干扰、扰乱或损伤。在“后门”耦合效应方面,已研究了多种不同类型的孔缝、线缆、腔体效应等。在“前门”耦合效应方面,主要关注耦合通道中的滤波器、限幅器等防护设备。其中,对于滤波器,人们主要关注其滤波和插损性能,通常采用低功率连续波扫频方法(如矢量网络分析仪)开展相应测试。由此得到的测试结果是否适用于超宽带(Ultra Wide Band,UWB)脉冲电磁环境还需要进一步讨论,这是因为UWB脉冲电磁环境与普通的连续波电磁环境明显不同。主要区别为,UWB电磁环境的场强很高(峰值可达到几十kV/m、耦合到滤波器的前端电压也可达到几kV)、频谱范围很宽(几百MHz)。在这种环境下,滤波器响应的研究很少。采用实验研究了微带线滤波器的对UWB脉冲的抑制性能,但由于耦合的UWB信号强度不强,实验中没有观测到非线性效应。研究结果表明,滤波器在强场、宽谱条件下可能会出现很强的非线性无源互调现象。由此可见,滤波器在UWB脉冲环境下的传输特性可能会与普通连续波环境下的传输特性不同。


本文采用实验和理论方法重点研究射频滤波器在UWB脉冲辐射环境下的响应特性,分析其与矢网扫频测量结果的差异,并讨论这两种测量结果对超宽带信号的预测能力,以判断在UWB脉冲效应研究中,能否直接利用连续波扫频测试方法获得的结果。


1 实验研究


滤波器常用于抑制不需要的电磁干扰信号,工作原理主要是反射和/或吸收系统运行频带之外的信号,是一种非常有效的带外“前门”防护器件,在电磁兼容性设计中有着广泛的应用。本文研究的射频滤波器(型号为JD-10LC1A-E002)主要由电容和电感组成,是一种反射式的集总无源滤波器,可有效抑制瞬态电磁干扰,并且能够承受较高的冲击电压。为了研究其传输性能,本文分别采用矢网和超宽带脉冲进行测量。


1.1 矢网测量


采用矢量网络分析仪的扫频测量方法,可直接测量得到滤波器的传递函数,如图1所示。其带通在为25~112 MHz范围内。


超宽带脉冲环境下射频滤波器非线性响应分析


图1 矢网测量得到的传递函数


1.2 超宽带脉冲测量


针对滤波器的实际使用情况,在超宽带脉冲测试中,本文采用插入式测试方法,如图2所示。即利用天线将辐射场耦合到插入设备(被测设备)中,然后用示波器测量插入前后的时域信号。图3给出了滤波器插入前测量得到耦合的超宽带脉冲信号。其脉宽大约为1 ns,主要频谱成份集中在100~700 MHz之间。此外,通过测量并计算得到插入前端的峰值电压为2373 V。

超宽带脉冲环境下射频滤波器非线性响应分析


图2 滤波器瞬态响应测量示意图


超宽带脉冲环境下射频滤波器非线性响应分析


图3 滤波器插入前耦合的超宽带信号


在这个环境下,插入滤波器后测量得到的输出波形如图4所示。由此可见,滤波器插入后的耦合信号发生了明显变化,出现了脉冲振荡,延长了脉冲作用时间,说明滤波器对耦合的超宽带脉冲信号具有腔体的储能特征。此外,根据实验结果还可得到滤波器对超宽带脉冲信号的峰值抑制能力约为31 dB。


根据上述测量结果,利用傅里叶变换和下列传递函数T (ω)的表达式,可得到滤波器在该环境下的传递函数如图5所示。


式中:Vin为滤波器的前端输入电压;Vout为后端输出电压。由图5可见,在超宽带脉冲环境下,滤波器的带外抑制性能依然很好,与矢网测量结果基本一致。但带内的传递函数出现了大于1的情况,说明滤波器对超宽带脉冲的响应有非线性效应。

超宽带脉冲环境下射频滤波器非线性响应分析


图4 滤波器插入后耦合的超宽带信号


超宽带脉冲环境下射频滤波器非线性响应分析


图5 超宽带脉冲环境测量得到的传递函数


2 响应分析


根据射频滤波器的电磁特性,本文将从非线性无源互调和Q值方面分析上述实验结果,研究射频滤波器对超宽带脉冲的响应。


2.1 非线性无源互调效应


真实的滤波器具有固有的非线性特征,如接触非线性、材料非线性等。在实际应用中,这些非线性会导致滤波器产生无源互调效应。在超宽带脉冲环境下,由于耦合感应的电压更高,频谱更宽,因此将会不可避免的出现这种非线性无源互调响应。通常情况下,这种响应的关系用多项式可表示为


超宽带脉冲环境下射频滤波器非线性响应分析Vout=a+bVin+cV2in+dV3in+


式中:a,b,c,d为多项式系数。在超宽带脉冲作用下,其输入电压可表示为    Vin=i=0Vin(ωi)  


超宽带脉冲环境下射频滤波器非线性响应分析


式中:Vin (ωi)为傅里叶变换频域量。以两频率点为例,将式(2)代入式(1)即可得到非线性无源互调的各阶产物为  ωim=mω1+nω2


ω
2

ωim=mω1+nω2

超宽带脉冲环境下射频滤波器非线性响应分析

超宽带脉冲环境下射频滤波器非线性响应分析


式中:m,n为整数,(|m|+|n|)为互调阶数。不同于通信系统主要关注的是两个频点的 3 阶互调产物,本文的超宽带脉冲含有连续频谱,需要考虑的连续谱的互调产物,因此计算难度更大。当互调产物落在带内时,将会通过滤波器,从而导致传递函数大于 1。当互调产物落在通带之外时,滤波器将会抑制其通过。


除此之外,互调产物随着输入功率的变化还将会出现线性-非线性相互作用。针对同一滤波器,图6给出了在超宽带脉冲波形相同、峰值场强较小环境下滤波器的传递函数(耦合到前端的输入电压约为 214 V)。由此可见,在不同场强的超宽带脉冲辐射环境下,滤波器的传输特性也不同。其主要互调产物不但不同,而且还具有非线性。因此,在超宽带脉冲作用下,对滤波器的互调产物预测非常困难。


超宽带脉冲环境下射频滤波器非线性响应分析


图6 较小强度的超宽带脉冲环境测量得到的传递函数


2.2 Q值效应


根据滤波器的耦合谐振器理论,它具有一定的Q值。也就是说,滤波器具有储能和谐振输出特征。当超宽带脉冲信号耦合进入滤波器后,滤波器将会存储超宽带脉冲信号的能量,然后逐渐输出。在储能的过程中,将会出现非线性无源互调。在输出过程中,将会出现滤波和振荡,并且振荡周期逐渐趋向于通带频率的周期。此外,脉冲振荡信号的衰减时间与Q值密切相关,其衰减时间常数τ可表示为


式中:ω为角频率。一般情况下,射频滤波器在通带内的Q值约为几十,由此可计算得到衰减时间常数约为10 ?7 s量级。另外,由图4可知,经过滤波器后输出的信号时长(最大值的1/e)约3×10?7 s,这与上述的测量结果基本一致。


3 应用分析


通过上述分析可知,滤波器在低功率连续波环境下和高功率超宽带脉冲环境下的响应机理不同,得到的传递函数也不相同。为了进一步分析其在应用上的差异,可分析他们预测的输出电压波形。根据图2中的输入电压V in (t)和图5中传递函数的傅里叶逆变换T (t),利用下式可得预测结果如图7所示。


式中:Vpred预测结果;⊕为卷积运算符。


超宽带脉冲环境下射频滤波器非线性响应分析


图7 基于两个传递函数的预测波形与实测波形比较


图7中的实线为实测波形,虚线为基于传递函数的预测波形。由此可见,基于超宽带脉冲测得的传递函数,其预测结果与实测结果基本一致。而基于矢网扫频测得的传递函数,其预测结果无论是从能量上、峰值上,还是振荡特征上都明显小于实测结果。这主要因为矢网测得的传递函数幅度谱明显小于真实的幅度谱,并且在相位上也存在较大差异。以上结果也反映出连续波扫频方法测量的结果不可用于超宽带脉冲耦合效应分析。


4 结论


文中分别在低功率连续波和超宽带脉冲条件下开展了射频滤波器响应的实验研究和理论分析。在超宽带脉冲条件下,该型滤波器能够显著地降低超宽带信号峰值幅度,但是滤波器的时域响应波形出现了脉冲振荡特征,并且其传递函数在带内某些频段远大于1。这主要是滤波器固有的非线性效应和Q值效应引起的,由此导致在超宽带脉冲作用下滤波器出现了非线性无源互调、储能振荡等现象,其响应机理与连续波条件下的响应机理明显不同。另外,基于连续波测量结果预测的超宽谱脉冲激励响应在能量上和峰值功率上都明显小于实测结果。由此可知,在超宽带脉冲效应分析和评估中,如果系统中存在滤波器,则不可采用连续波扫频测试结果进行分析。另外,由于核电磁脉冲与本文研究的超宽带脉冲具有相似特性:宽谱和强场,因此本文的结论同样适用于核爆炸电磁脉冲效应的研究。


本文内容转载自《强激光与粒子束》2020年第3期,版权归《强激光与粒子束》编辑部所有。


在线留言询价
推荐阅读
  • 点击次数: 0
    2026-02-05
    ADP151 是一款超低噪声、低静态电流的 LDO(低压差)线性稳压器,工作电压范围为 2.2 V 至 5.5 V,可提供高达 200 mA 的输出电流。其满载时仅消耗 265 µA 的典型工作电源电流,非常适合电池供电的便携式设备。关断电流消耗通常仅为 0.2 µA。ADP151 采用专有架构,为噪声敏感的模拟和射频应用提供卓越的噪声性能,且无需噪声旁路电容。该器件还经过优化,可与小型 1 µF 陶瓷电容配合使用。内部结构ADP151 内部由以下部分组成:基准电压源(Reference)误差放大器(Error Amplifier)反馈分压器(Feedback Voltage Divider)PMOS 导通晶体管(PMOS Pass Transistor)输出电流通过 PMOS 导通器件输送,该器件由误差放大器控制。误差放大器将基准电压与来自输出的反馈电压进行比较,并放大其差值:EN 输入端有一个内部下拉电阻,当该引脚悬空时可将输入保持为低电平。输出电压选项与使能控制ADP151 提供 16 种输出电压选项,范围从 1.1 V 至 3.3 V。该器件使用 EN 引脚在正常操作条件下使能和禁用 VOUT 引脚:EN 为高电平 → VOUT 开启EN 为低电平 → VOUT 关闭如需自动启动,可将 EN 连接至 VIN。
  • 点击次数: 1
    2026-02-04
    保护特性LT3042 集成了多项针对电池供电应用的保护特性。精密电流限制和热过载保护可防止 LT3042 在输出端发生过载和故障条件时损坏。正常工作时,结温不得超过 125°C(E-级、I-级)或 150°C(H-级、MP-级)。为保护 LT3042 的低噪声误差放大器,SET-TO-OUTS 保护钳位将 SET 与 OUTS 之间的最大电压限制在一定值,通过钳位的最大直流电流为 20mA。因此,对于 SET 由电压源主动驱动的应用,电压源必须限制在 20mA 或更小。此外,为限制瞬态故障条件下流过这些钳位的瞬态电流,SET 引脚电容(CSET)的最大值应限制为 22μF。LT3042 还集成了反向输入保护,IN 引脚可承受高达 -20V 的反向电压,而不会产生任何输入电流,也不会在 OUT 引脚产生负电压。该稳压器可保护自身和负载免受反向接入电池的影响。在需要备用电池的电路中,可能出现几种不同的输入/输出条件。当输入端被拉至 GND、某个中间电压或开路时,输出电压可能保持。在所有这些情况下,反向电流保护电路可防止电流从输出端流向输入端。然而,由于 OUTS-TO-SET 钳位的存在,除非 SET 引脚悬空,否则电流可以流过 SET 引脚电阻到 GND,以及通过输出过冲恢复电路流过高达 15mA 到 GND。通过在 OUTS 和 SET 引脚之间放置一个肖特基二极管(阳极在 OUTS 引脚),可以显著减小通过输出过冲恢复电路的电流。
  • 点击次数: 1
    2026-02-04
    过载恢复与许多 IC 电源稳压器一样,LT3042 集成了安全工作区(SOA)保护。SOA 保护在输入-输出差分电压大于 12V 时激活。随着输入-输出差分电压的增加,SOA 保护会降低电流限制,并将内部功率晶体管保持在安全工作区域内,适用于所有输入-输出电压值,直至 LT3042 的绝对最大额定值。LT3042 为所有输入-输出差分电压值提供一定水平的输出电流。有关详细信息,请参阅典型性能特性部分的电流限制曲线。首次上电且输入电压上升时,输出跟随输入,保持输入-输出差分电压较低,以使稳压器能够提供大输出电流并启动进入高输出负载。然而,由于电流限制折返,在高输入电压下,如果输出电压较低且负载电流较高,可能会出现问题。这种情况发生在短路移除后,或输入电压已开启后 EN/UV 引脚被拉高。在这种情况下,负载线与输出电流特性曲线在两个点相交。稳压器现在有两个稳定的工作点。由于这种双重交叉,输入电源可能需要循环降至零并重新上电以使输出恢复。其他具有折返电流限制保护的线性稳压器(如 LT1965 和 LT1963A 等)也表现出这种现象,因此这并非 LT3042 独有。
  • 点击次数: 0
    2026-02-04
    PSRR 与输入电容对于利用 LT3042 作为开关转换器后级稳压的应用,直接在 LT3042 输入端放置电容会导致交流电流(在开关频率下)在 LT3042 附近流动。这种相对较高的高频开关电流产生磁场,耦合到 LT3042 的输出端,从而降低其有效 PSRR。虽然高度依赖于 PCB 设计,但开关前级稳压器、输入电容等因素导致的 PSRR 衰减在 1MHz 时很容易超过 30dB。即使将 LT3042 从电路板上拆下,这种衰减依然存在,因为它实际上降低了 PCB 板本身的 PSRR。虽然对于传统低 PSRR 的 LDO 可以忽略,但 LT3042 的超高 PSRR 需要仔细注意高阶寄生效应,以提取稳压器提供的全部性能。为减轻 LT3042 附近高频开关电流的流动,只要开关转换器的输出电容距离 LT3042 超过一英寸,就可以完全移除 LT3042 的输入电容。磁耦合随距离增加而迅速减小。然而,如果开关前级稳压器距离 LT3042 太远(保守估计超过几英寸),且没有输入电容,与任何稳压器一样,LT3042 的输入端将在寄生 LC 谐振频率处振荡。此外,通常非常常见(且是首选做法)的做法是用一定容值的电容旁路稳压器输入端。因此,此选项在其适用范围内相当有限,并非最理想的解决方案。为此,LTC 建议使用 LT3042 演示板(DC2246B)布局以实现最佳可能的 PSRR 性能。LT3042 演示板布局利用磁场抵消技术来防止这种高频电流流动引起的 PSRR 衰减——同时保留输入电容的使用。
  • 点击次数: 0
    2026-02-04
    稳定性与输出电容LT3042 需要输出电容来保证稳定性。鉴于其高带宽,LTC 建议使用低 ESR 和低 ESL 的陶瓷电容。为保证稳定性,需要最小 4.7μF 的输出电容,ESR 低于 50mΩ,ESL 低于 2nH。鉴于使用单个 4.7μF 陶瓷输出电容即可实现的高 PSRR 和低噪声性能,更大的输出电容值仅略微改善性能,因为稳压器带宽随输出电容增加而降低——因此,使用大于最小 4.7μF 的输出电容几乎没有收益。尽管如此,更大的输出电容值确实可以减小负载瞬态期间的峰值输出偏差。注意,用于去耦 LT3042 供电的各个元件的旁路电容会增加有效输出电容。需额外考虑所用陶瓷电容的类型。它们采用多种电介质制造,每种在温度和施加电压下具有不同的特性。最常用的电介质具有 EIA 温度特性代码 Z5U、Y5V、X5R 和 X7R。Z5U 和 Y5V 电介质适合在小封装中提供高电容值,但它们往往具有更强的电压和温度系数,如图 4 和图 5 所示。当用于 5V 稳压器时,16V 10μF Y5V 电容在工作温度范围内,在施加的直流偏置电压下,有效值可低至 1μF 至 2μF。X5R 和 X7R 电介质具有更稳定的特性,因此更适合 LT3042。X7R 电介质在温度范围内具有更好的稳定性,而 X5R 成本较低且可提供更 高容值。尽管如此,使用 X5R 和 X7R 电容时仍需谨慎。X5R 和 X7R 代码仅指定工作温度范围和温度引起的最大电容变化。虽然 X5R 和 X7R 因直流偏置引起的电容变化优于 Y5V 和 Z5U 电介质,但仍可能显著降低到不足水平。如图 6 所示,电容器的直流偏置特性往往随元件封装尺寸增大而改善,但强烈建议在工作电压下验证预期电容值。附图:
热门分类
关于我们

───  公众号二维码  ───

兆亿微波商城微信公众号

兆亿微波商城www.rfz1.com是一个家一站式电子元器件采购平台,致力于为广大客户提供高质量、高性能的电子元器件产品。产品覆盖功放器件、射频开关、滤波器、混频器、功分器、耦合器、衰减器、电源芯片、电路板及射频电缆等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为客户提供一站式供应链采购服务。 

  • 品质 • 正品行货 购物无忧
  • 低价 • 普惠实价 帮您省钱
  • 速达 • 专业配送 按时按需
Copyright ©2020 - 2021 兆亿微波科技有限公司
X
1

QQ设置

    1
3

SKYPE 设置

4

阿里旺旺设置

5

电话号码管理

电话 电话 电话
010-62975458
    1
6

二维码管理

    1
返回顶部
展开