嗨,欢迎来到兆亿微波官方商城!
服务热线: 010-62975458  17600099251
购物车图片 购物车 ( )
全部商品分类

传感器在自动驾驶中扮演什么角色,为什么如此重要?

2021/8/19 14:44:45
浏览次数: 7

    自动驾驶是日常生活中必不可少得交通工具,很多人不知道,传感器在自动驾驶中扮演什么角色,为什么如此重要?要实现充满自动驾驶车辆的道路,我们仍有很长的路要走。目前的传感器能力虽然很有帮助,但在涉及到自动驾驶车辆时,还是相对初级的。


传感器在自动驾驶中扮演什么角色,为什么如此重要?


    也就是说,在过去的几年里,汽车行业已经取得了巨大的进步。如果你在五六年前推出一辆全新的汽车,它可能包含大约60到100个传感器。今天,这个数字已接近200个或更多。随着车辆继续变得更加智能,传感器的演变和复杂性也随之变化,并将随着新功能的普及而继续增长。


    为了推动自动驾驶汽车的发展,技术供应商和车厂正在考虑各种挑战,如传感器的退化、行业标准的合作,以及在车辆的生命周期内对软件的网络安全防御的维护/保养。


    汽车行业的竞争


    OEM面临的最大挑战之一是跟上传感器和数据发展的快速步伐。传感器需要为汽车系统提供必要的数据置信度,以满足设计要求。


    在充斥着大量司机、行人、自行车和摩托的密集大都市道路中驾驶,需要车辆在瞬间做出决定,停车或转向以避免撞上行人或其他车辆。因此,我们开始看到传感器融合发挥作用,在ADAS反应的时间内,通过消耗和解释各种数据输入,做出人类驾驶员可能无法做出的决定。


    在传感器制造的初步阶段,车厂也必须遵守汽车功能安全标准,以防止芯片或软件故障。ISO 26262是车规标准,规定了OEM和供应商必须遵循的开发流程,达到功能安全标准。通过遵守ISO 26262,OEM和供应商提供保证,他们的设备将在预期的时间内执行。


    传感器退化的挑战不断变化的传感器领域的另一个方面是传感器退化。传感器退化是自动驾驶汽车的一个自然部分,特别是考虑到今天的车辆通常有10到15年的寿命。退化的主要原因包括传感器的一般磨损、恶劣的工作环境,以及其他电子系统元件的退化。


    车厂和技术供应商需要考虑激光雷达、摄像头、超声波等传感器在车辆的整个预期寿命内,能否达到与新车时相同甚至更高的性能水平。他们还必须回答如果传感器开始失效会发生什么(即,如何提醒司机,建立安全功能等)。为了对抗退化,OEM需要对车辆内的半导体和其他部件进行建模和设计,以便在许多不同的环境中创建预测的故障率和替代方案。


    网络安全的困扰


    在确保自动驾驶车辆传感器的安全时,有几个不同的因素需要考虑。黑客入侵自动驾驶汽车始终是一个令人担忧的问题,应该加以解决,但另一个不太明显的安全因素是攻击者影响嵌入车辆的机器学习技术,使其以恶意方式作出反应。


    例如,英国的一项研究引入了一个视频广告牌,该广告牌被篡改为显示一个停车标志,时间短至几分之一秒。自动驾驶车辆会感应到停车标志并停车,因为它们能够接收到该图像,并以与感应到道路上的停车标志相同的方式对其作出反应。然而,人类司机将无法对该图像作出反应,如果前面的自动驾驶车辆在没有警告或明显理由的情况下突然停止,就会产生潜在的危险。这些“幻影物体”有可能伤害司机和行人,这只是车厂在保证自动驾驶车辆安全方面面临的另一个挑战。


    为了加强对传感器漏洞的防范,NHTSA建议汽车行业遵循美国国家标准与技术研究所(NIST)记录的网络安全框架。该框架提出了一个分层的网络安全方法,围绕这些关键功能:识别、保护、检测、响应和恢复。


    系统设计者必须保障系统运行,同时在与司机共享警报方面取得适当的平衡。考虑到ADAS,它被设计用来警告司机道路上即将发生的危险以及潜在的系统故障。通常情况下,由于安全漏洞导致的系统错误会引发召回,这需要去经销商那里,对于车厂来说,可能是一个昂贵的修复成本。一个更好的方法是在安全方面进行建设,以防止恶意行为首先导致错误的发生。


    随着这些设备的复杂性和能力的增加,网络安全攻击的不同途径也将相应增加。设计师和车厂将需要更新他们的防御措施,管理这些类型的意外反应,以防止这些非传统的网络攻击。这种防御的一部分应该是一个强大的软件生命周期管理计划,它允许组织应用从他们的经验中获得的教训。这一理念同样适用于传感器本身的物理性能,以防止退化。


    随着自动驾驶汽车变得越来越普遍,将有更多的法规发挥作用,以及各种消费者的习惯,这将有助于塑造市场的未来。随着我们继续看到自动驾驶汽车进入主流,与传感器融合领域的进展保持同步是具有挑战性的,但也是必要的。


在线留言询价
推荐阅读
  • 点击次数: 1
    2026-02-06
    AD620 是亚德诺半导体(ADI)生产的经典低功耗仪表放大器,广泛应用于传感器信号调理、医疗电子设备等领域。这段话展示了其在压力传感器和心电图监测中的典型应用,强调了低噪声、低功耗、小尺寸等关键优势。压力测量虽然 AD620 在许多桥式应用(如称重秤)中很有用,但它特别适合于由较低电压供电的高阻抗压力传感器,其中小尺寸和低功耗变得更加重要。上图显示了一个由 5V 供电的 3kΩ 压力传感器桥。在这种电路中,该电桥仅消耗 1.7mA。添加 AD620 和缓冲分压器后,信号调理的总电源电流仅为 3.8mA。小尺寸和低成本使 AD620 对电压输出压力传感器特别有吸引力。由于它具有低噪声和低漂移,它也适用于诊断性无创血压测量等应用。医疗心电图(ECG)AD620 的低电流噪声使其可用于心电图监测仪(如下图),其中 1MΩ 或更高的高源阻抗并不罕见。AD620 的低功耗、低电源电压要求以及节省空间的 8 引脚 mini-DIP 和 SOIC 封装,使其成为电池供电数据记录器的绝佳选择。此外,AD620 的低偏置电流和低电流噪声,加上其低电压噪声,改善了动态范围以获得更好的性能。电容 C1 的值被选择用于维持右腿驱动环路的稳定性。必须为此电路添加适当的保护措施(如隔离),以保护患者免受可能的伤害。
  • 点击次数: 1
    2026-02-06
    内部/外部参考源AD7616 可以使用内部或外部参考源工作。该器件包含一个片内 2.5V 带隙基准。REFINOUT 引脚允许访问片内 4.096V 参考源,该参考源由内部产生的 2.5V 参考源生成,或者允许将 2.5V 外部参考源施加到AD7616。外部施加的 2.5V 参考源也会通过内部缓冲器放大到 4.096V。这个 4.096V 缓冲参考源是 SAR ADC 使用的参考源。REFSEL 引脚是一个逻辑输入引脚,允许用户在内部参考源和外部参考源之间进行选择。如果此引脚设置为逻辑高电平,则选择并使能内部参考源。如果此引脚设置为逻辑低电平,则禁用内部参考源,必须将外部参考电压施加到 REFINOUT 引脚。内部参考缓冲器始终使能。完全复位后,AD7616 根据 REFSEL 引脚在复位前选择的状态工作在相应的参考模式下。REFINOUT 引脚对于内部和外部参考源选项都需要去耦。REFINOUT 引脚和 REFINOUTGND 之间需要一个 100 nF X8R 陶瓷电容。AD7616 包含一个配置为将参考电压放大到约 4.096V 的参考缓冲器。REFCAP 和 REFGND 之间需要一个 10 μF X5R 陶瓷电容。REFINOUT 引脚可用的参考电压为 2.5V。当 AD7616 配置为外部参考模式时,REFINOUT 引脚是高阻抗输入引脚。如果要在系统其他位置应用内部参考源,必须先进行外部缓冲。
  • 点击次数: 1
    2026-02-06
    接地和布局容纳 AD9833 的印刷电路板(PCB)应设计为将模拟和数字部分分开,并限制在电路板的特定区域。这有助于使用可轻松分离的接地平面。对于接地平面,通常最好采用最少蚀刻技术,因为它能提供最佳的屏蔽效果。数字和模拟接地平面应仅在一点连接。如果 AD9833 是唯一需要 AGND 到 DGND 连接的器件,则接地平面应在 AD9833 的 AGND 和 DGND 引脚处连接。如果 AD9833 处于多个器件需要 AGND 到 DGND 连接的系统中,连接应在一点进行,该星形接地点应尽可能靠近 AD9833 建立。避免在器件下方布设数字线,因为这些线会将噪声耦合到芯片上。模拟接地平面应允许在 AD9833 下方延伸,以避免噪声耦合。AD9833 的电源线应使用尽可能宽的走线,以提供低阻抗路径并减少电源线上毛刺的影响。快速开关信号(如时钟)应使用数字接地进行屏蔽,以避免向电路板其他部分辐射噪声。避免数字和模拟信号的交叉。电路板相对两侧的走线应以直角相互走线。这减少了通过电路板的馈通效应。微带技术是目前最好的技术,但在双面电路板上并不总是可行。在这种技术中,电路板的元件侧专用于接地平面,信号放置在另一侧。良好的去耦很重要。AD9833 应使用 0.1 μF 陶瓷电容与 10 μF 钽电容并联进行电源旁路。为了从去耦电容获得最佳性能,应将其尽可能靠近器件放置,理想情况下直接紧贴器件。
  • 点击次数: 1
    2026-02-06
    串行接口AD9833 具有标准 3 线串行接口,兼容 SPI、QSPI™、MICROWIRE® 和 DSP 接口标准。数据以 16 位字的形式在串行时钟输入 SCLK 的控制下加载到器件中。该操作的时序图见下图。FSYNC 输入是一个电平触发输入,用作帧同步和芯片使能。仅当 FSYNC 为低电平时,数据才能传输到器件中。要开始串行数据传输,应将 FSYNC 拉低,同时遵守最小的 FSYNC 到 SCLK 下降沿建立时间 t₇。FSYNC 变低后,串行数据在 SCLK 的 16 个时钟周期的下降沿移入器件的输入移位寄存器。FSYNC 可在第 16 个 SCLK 下降沿之后拉高,同时遵守最小的 SCLK 下降沿到 FSYNC 上升沿时间 t₈。或者,FSYNC 可保持低电平持续多个 16 个 SCLK 脉冲,然后在数据传输结束时拉高。这样,可以在 FSYNC 保持低电平时连续加载 16 位字流;FSYNC 仅在最后一个字加载的第 16 个 SCLK 下降沿之后拉高。SCLK 可以是连续的,也可以在写操作之间空闲为高电平或低电平。在任何情况下,当 FSYNC 变低时(t₁₁),SCLK 必须为高电平。
  • 点击次数: 1
    2026-02-06
    电流限制和热过载保护ADP7182 通过电流限制和热过载保护电路防止因过度功耗而损坏。ADP7182 设计为当输出负载达到 -350 mA(典型值) 时限制电流。当输出负载超过 -350 mA 时,输出电压会降低以维持恒定的电流限制。器件包含热过载保护,将结温限制在最高 150°C(典型值)。在极端条件下(即高环境温度和功耗),当结温开始升至 150°C 以上时,输出关断,输出电流降为零。当结温降至 135°C 以下时,输出重新开启,输出电流恢复至其标称值。考虑 VOUT 对地硬短路的情况。起初,ADP7182 限制电流,仅允许 -350 mA 流入短路点。如果结的自热足以使其温度升至 150°C 以上,热关断将激活,关断输出并将输出电流降为零。随着结温冷却并降至 135°C 以下,输出重新开启并导通 -350 mA 流入短路点,再次导致结温升至 150°C 以上。这种在 135°C 和 150°C 之间的热振荡导致输出端出现 -350 mA 和 0 mA 之间的电流振荡,只要短路存在,这种振荡就会持续。电流和热限制保护旨在防止器件在意外过载条件下损坏。为确保可靠工作,必须外部限制器件功耗,使结温不超过 125°C。
热门分类
关于我们

───  公众号二维码  ───

兆亿微波商城微信公众号

兆亿微波商城www.rfz1.com是一个家一站式电子元器件采购平台,致力于为广大客户提供高质量、高性能的电子元器件产品。产品覆盖功放器件、射频开关、滤波器、混频器、功分器、耦合器、衰减器、电源芯片、电路板及射频电缆等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为客户提供一站式供应链采购服务。 

  • 品质 • 正品行货 购物无忧
  • 低价 • 普惠实价 帮您省钱
  • 速达 • 专业配送 按时按需
Copyright ©2020 - 2021 兆亿微波科技有限公司
X
1

QQ设置

    1
3

SKYPE 设置

4

阿里旺旺设置

5

电话号码管理

电话 电话 电话
010-62975458
    1
6

二维码管理

    1
返回顶部
展开