嗨,欢迎来到兆亿微波官方商城!
服务热线: 010-62975458  17600099251
购物车图片 购物车 ( )
全部商品分类

基于锂离子电池充电器IC的最大功率点追踪系统

2021/8/31 15:53:09
浏览次数: 7
基于锂离子电池充电器IC的最大功率点追踪系统
图1: 室外监控摄像头和室外照明系统中的太阳能板应用
 
系统综述
 
本参考设计基于MPS的MP2731 IC并配合MC96F1206控制器(低成本8051 MCU)开发,适用于中小型太阳能充电解决方案。与传统MPPT系统不同,该系统集成了VIN连接开关、ADC和电压/电流采样电路,因而显著降低了系统成本。系统设计采用扰动观察(P&O)最大功率点追踪算法,可以实现98%或更高的追踪精度。
 
图2显示了该参考设计的系统功能框图。其主要模块包括MP2731 、MC96F1206 MCU、电池和系统负载。
 
基于锂离子电池充电器IC的最大功率点追踪系统
图2: MPPT系统功能框图
 
MP2731的功能特性包括:在9V输入的5W系统中效率高达93%;MPPT精度达到98%;核心电路面积小至25mmx25mm;具有内置强大充电保护功能(包括JEITA和可调安全定时器)的全集成电源开关;具有I2C 接口,用于灵活的系统参数设置和状态报告(请参见图3)。
 
基于锂离子电池充电器IC的最大功率点追踪系统
图3: MPPT控制系统PCB
 
系统设计
 
MPPT原理
 
太阳能板的输出功率取决于几个因素:辐照度、太阳能板的工作电压和电流、负载。通常,系统都存在一个最大功率点,在这一点上太阳能板向系统输出最佳功率(请参见图4)。使用最大功率点追踪技术(例如P&O或增量电导法)可在变化的辐照条件下主动保持太阳能板在MPPT模式下运行。
 
 
基于锂离子电池充电器IC的最大功率点追踪系统
图4: 太阳能板的P-V 和I-V曲线
 
在基于功率的P&O MPPT算法中,PV面板的功率-电压导数(dP / dV)被用作追踪参数。通过公式(1)可以计算何时达到最大功率点:
 
基于锂离子电池充电器IC的最大功率点追踪系统
 
硬件实现
 
DC / DC变换器通常被用来确保系统内部的MPP优化。高度集成的开关充电器(在此参考设计中为MPS的MP2731)连接在PV面板和电池负载之间。
 
基于锂离子电池充电器IC的最大功率点追踪系统
图5: MP2731功能模块
 
当面板处于低辐照度时,反向阻断FET Q1用于阻断从电池负载到PV面板的路径。IC的输入电压/电流和输出电压/电流通过一个8位ADC采样。IC支持I2C通信,能够将数字化的电流和电压信息轻松传递给外部MCU。
 
软件实现
 
P&O MPPT算法通过ABOV半导体公司的20引脚8位MC96F1206 MCU实现。需激活MCU的I2C外设,以实现与MP2731之间的通信。
 
基于锂离子电池充电器IC的最大功率点追踪系统
图6: 系统级软件流程图
 
注意:在更新 IOFFSET, 之前,请关闭连接在MP2731 SYS引脚上的其他设备,以确保IOFFSET的正确校准。 图6显示了系统级软件流程图。当VIN降至欠压保护阈值之下时,MCU进入睡眠模式;当VIN恢复时,将发送中断(INT)信号以唤醒MCU。然后,MCU读取MP2731
 
基于锂离子电池充电器IC的最大功率点追踪系统
表1: 操作寄存器
 
将输入电流限制设置为最大值,面板电压将仅由输入电压限制环路控制。调整输入电压限制环路参考电压,就可以调整PV面板电压。MP2731初始化完成后,会读取ADC初始值,然后启用充电功能。
 
检查VIN_STAT是否等于1。如果不等于1,则将VIN_REG增加一个单位,然后返回到VIN_STAT的先前值。如果VIN_REG达到最大限制,VIN_STAT仍不等于1,则充电电流逐渐减小,并返回到VIN_STAT设置的先前值。
 
当VIN_REG设置达到限值时,ICC设置为最小值。如果VIN_STAT仍不等于1,则MCU进入睡眠模式,MP2731的充电功能被禁用,直到INT中断功能将MCU唤醒为止。
 
部分遮蔽时追踪本地MPP
 
如果PV面板被部分遮蔽,而且可以使用常规P&O MPPT算法追踪本地MPP,则每次输入电压标志发生变化时,MCU都会启动一次扫描。MCU在面板开路电压(VOC)的50%到80%之间,以100mV的步长调节MP2731的输入稳压参考电压,以找到最佳功率点。
 
初始扫描之后,PV面板被设置为在最大功率点运行。为了在变化的负载和辐照条件下继续追踪最佳功率点,P&O算法每256ms在MCU上运行一次(请参见图7)。
 
基于锂离子电池充电器IC的最大功率点追踪系统
图7: P&O MPPT算法
 
实验结果
 
图8显示了具有(8V,500mA)MPP的PV面板的MPPT过程。t0之前为空载,PV面板在开路电压下输出12V。MP2731 IC和MCU上电之后,PV面板将以MCU预设的6V输入电压运行。从t0到t2,MCU扫描最大功率点。
 
在t1处找到最大功率点,但扫描算法继续扫描输入电压,直到功率降至t2处记录的峰值功率的85%。 t2之后,MCU将面板电压设置为扫描出的峰值电源电压,然后激活实时P&O算法。
 
图9显示了锂离子电池的完整充电行为。从t0到t1,系统加电并扫描MPP。从t1到t2,随着电池充电电流从恒定电流变为较低值,电池经历了恒流(CC)和恒压(CV)阶段。当电池接近满电时,PV面板的电压将再次开始上升到面板的开路电压。存在轻载条件是因为充满电后电池消耗的负载电流较低。 
 
基于锂离子电池充电器IC的最大功率点追踪系统
图8:PV面板从上电到稳态的MPPT过程
 
基于锂离子电池充电器IC的最大功率点追踪系统
图9: 充电周期内的MPPT行为
 
基于MP2731的MPPT系统具有低电阻和集成MOSFET,可在各种条件下实现高效率(见图10)。
 
基于锂离子电池充电器IC的最大功率点追踪系统
图10: PV面板效率数据(5V, 9V, 12V)
 
基于锂离子电池充电器IC的最大功率点追踪系统
(PV面板电压约为5V) 
 
基于锂离子电池充电器IC的最大功率点追踪系统
(PV面板电压约为8V)
图11: 部分遮蔽时的追踪性能
 
图11显示了部分遮蔽时PV面板的追踪性能。当t0发生部分遮蔽时,PV面板的电压和电流会降低。在t1部分遮蔽消失,MPPT会将PV面板电压调整回MPP级别。
 
基于锂离子电池充电器IC的最大功率点追踪系统
(PV面板电压约为5V)
 
基于锂离子电池充电器IC的最大功率点追踪系统
(PV面板电压约为8V)
图12: 自然光环境下的追踪性能
 
图12显示了室外自然光下PV面板的追踪性能。太阳辐照度的上下波动会影响PV面板的输出电流。但是,MPP面板电压通常不受辐照度(在此示例中约为8V)的影响。图12显示出有效的MPPT算法能够在不断变化的辐照条件下将MPP保持在8V。
 
结论
 
通过消除BOM中的分立式电压和电流采样电路,MP2731锂离子电池充电器IC有效降低了室外物联网系统的成本。其高度集成的低导通电阻可以实现具有紧凑PCB面积的高效系统。未来的产品开发计划将需要适应更高功率、更高电压的应用,需要进一步降低系统静态功耗并为多面板系统开发解决方案。
 
来源:MPS


在线留言询价
推荐阅读
  • 点击次数: 1
    2025-12-05
    Qorvo的TGA2594-HM是基于Qorvo 0.15um GaN-on-SiC工艺制造的封装功率放大器。TGA2594-HM的工作频率为27至31 GHz,饱和输出功率为36.5 dBm,功率附加效率为25%,小信号增益为25 dB。TGA2594-HM采用密封的22引线7x7 mm陶瓷QFN,设计用于印刷电路板的表面安装。该封装采用铜基,提供卓越的热管理。TGA2594-HM非常适合支持商业和军事应用。两个射频端口都集成了隔直电容,完全匹配50欧姆。无铅,符合RoHS标准。特征•频率范围:27-31GHz•磅:PIN=14 dBm时为36.5 dBm•PAE:25%连续波•小信号增益:25 dB•IM3:-35 dBc@25 dBm磅/音•偏压:VD=20 V,IDQ=140 mA,VG=-3 V(典型值)•包装尺寸:7 x 7 x 1.3毫米应用•军用卫星通信终端•商用卫星通信终端•点对点数字广播•点对多点数字广播引脚配置图如有型号采购及选型需求,可直接联系兆亿微波电子元件商城。
  • 点击次数: 1
    2025-12-05
    AD9963是引脚兼容的12位低功耗MxFE®转换器,提供两个采样速率为100 MSPS的ADC通道和两个采样速率为170 MSPS的DAC通道。这些转换器针对要求低功耗和低成本的通信系统的发射和接收信号路径进行了优化。数字接口提供灵活的时钟选项。发射路径可配置为1×、2×、4×和8×插值。接收路径具有一个可旁路的2×抽取低通滤波器。引脚配置图特征• 双通道10位/12位、100 MSPS ADCSNR = 67 dB, fIN = 30.1 MHz• 双通道10位/12位、170 MSPS DACACLR = 74 dBc• 5 个辅助模拟输入/输出通道• 低功耗:• 支持全双工和半双工数据接口• 72引脚、无铅小型LFCSP封装应用无线基础设施微微蜂窝基站医疗器械超声AFE便携式仪表信号发生器、信号分析仪如有型号采购及选型需求,可直接联系兆亿微波电子元件商城。
  • 点击次数: 0
    2025-12-05
    FRAC/INT 寄存器(RO)映射当 DB[2:0] 设为 000 时,访问片内 FRAC/INT 寄存器(寄存器 RO,见图 25)。RamponDB31 = 1 启用斜坡功能;DB31 = 0 关闭斜坡功能。MUXout Control片内多路复用器由 DB[30:27] 控制,真值表见图 25。12 位整数值(INT)DB[26:15] 设置 INT 值,该值是反馈分频系数的一部分。12 位 MSB 小数值(FRAC)DB[14:3] 与 LSB FRAC 寄存器(R1)中的 DB[27:15] 共同组成 25 位 FRAC 值,送入小数插值器。DB[14:3] 为 FRAC 的高 12 位(MSB),R1 中的 DB[27:15] 为低 13 位(LSB)。LSB FRAC 寄存器(R1)映射当 DB[2:0] 设为 001 时,访问片内 LSB FRAC 寄存器(寄存器 R1,见图 26)。保留位所有保留位必须写 0,以保证正常工作。相位调整使能DB28 = 1 启用相位调整;DB28 = 0 关闭。13 位 LSB 小数值(FRAC)DB[27:15] 与 RO 寄存器中的 DB[14:3] 共同组成 25 位 FRAC 值。DB[27:15] 为 FRAC 的低 13 位(LSB),RO 中的 DB[14:3] 为高 12 位(MSB)。12 位相位值DB[14:3] 定义相位字,用于在 RF 输出端引入相对相移。写寄存器 RO 后生效。相移量 = (相位值 × 360°) / 2¹²示例:相位值 = 512 时,相移 = 45°。如有型号采购及选型需求,可直接联系兆亿微波电子元件商城。
  • 点击次数: 0
    2025-12-05
    HMC600LP4(E)对数探测器/控制器其将输入端的RF信号转换为输出端的成比例的DC电压。HMC600LP4(E)采用连续压缩拓扑结构,在宽输入频率范围内提供极高的动态范围和转换精度。随着输入功率的增加,连续放大器逐一进入饱和状态,从而精确地近似对数函数。一系列平方律检测器的输出被求和,转换为电压域并缓冲以驱动LOGOUT输出。对于检测模式,LOGOUT引脚与VSET输入端短路,将提供19mV/dB的标称对数斜率和-95 dBm的截距。HMC600LP4(E)也可用于控制器模式,在该模式下,外部电压被施加到VSET引脚,以创建AGC或APC反馈回路。特征宽动态范围:高达75 dB灵活的电源电压:+2.7V至+5.5V掉电模式温度稳定性极佳紧凑型4x4mm无引线SMT封装应用HMC600LP4/HMC600LP4E是以下中频和射频应用的理想选择:•蜂窝/PCS/3G•WiMAX、WiBro和固定无线•电源监控电路•接收机信号强度指示(RSSI)•自动增益和功率控制如有型号采购及选型需求,可直接联系兆亿微波电子元件商城。
  • 点击次数: 2
    2025-12-05
    AD8001电流反馈型放大器布局需要注意以下问题:要想让 AD8001 达到规格书所标榜的高速性能,必须仔细设计印制板布局并慎重选型。必须采用低寄生参数元件,并遵循射频/高速电路设计规范。接地层:PCB 元件面的所有空余区域应铺整块接地层,以提供低阻抗回路。输入引脚附近要将接地层挖空,减小杂散电容。电源去耦:一律使用贴片瓷片电容(见图 13)。电容一端接接地层,另一端距每个电源引脚不超过 1/8 英寸(≈3 mm)。大容量储能:再并联一只 4.7 µF–10 µF 的钽电解,用来在输出快速、大信号跳变时提供瞬态电流,距离可稍远。反馈电阻:尽量靠近反相输入引脚,使该节点杂散电容降到最小。反相端电容变化 长线传输:若信号走线长度 1 英寸(≈25 mm),应采用微带线或带状线设计,特征阻抗取 50 Ω 或 75 Ω,并在两端做好终端匹配。如有型号采购及选型需求,可直接联系兆亿微波电子元器件商城。
热门分类
关于我们

───  公众号二维码  ───

兆亿微波商城微信公众号

兆亿微波商城www.rfz1.com是一个家一站式电子元器件采购平台,致力于为广大客户提供高质量、高性能的电子元器件产品。产品覆盖功放器件、射频开关、滤波器、混频器、功分器、耦合器、衰减器、电源芯片、电路板及射频电缆等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为客户提供一站式供应链采购服务。 

  • 品质 • 正品行货 购物无忧
  • 低价 • 普惠实价 帮您省钱
  • 速达 • 专业配送 按时按需
Copyright ©2020 - 2021 兆亿微波科技有限公司
X
1

QQ设置

    1
3

SKYPE 设置

4

阿里旺旺设置

5

电话号码管理

电话 电话 电话
010-62975458
    1
6

二维码管理

    1
返回顶部
展开