嗨,欢迎来到兆亿微波官方商城!
服务热线: 010-62975458  17600099251
购物车图片 购物车 ( )
全部商品分类

大功率晶闸管参数解析之开关特性

2021/9/8 15:29:36
浏览次数: 8

功率二极管晶闸管广泛应用于AC/DC变换器、UPS、交流静态开关、SVC和电解氢等场合,但大多数工程师对这类双极性器件的了解不及对IGBT的了解,为此我们组织了6篇连载,包括正向特性,动态特性,控制特性,保护以及损耗与热特性。内容摘自英飞凌英文版应用指南AN2012-01《双极性半导体技术信息》。


3.4 载流子存储效应和开关特性

 

当功率半导体的工作状态变化时,由于载流子存储效应,电流和电压的稳态值不会立即改变。

 

此外,晶闸管触发时只有门极结构附近的小块区域导通。由此产生的开关损耗必须以热的形式从半导体中散发出去。

 

3.4.1 开通

 

3.4.1.1  二极管

 

从非导通或阻断状态转入导通状态时,由于载流子存储效应,二极管处产生电压峰值(见图20)。

 

大功率晶闸管参数解析之开关特性
图20.二极管开通过程示意图

 

■  3.4.1.1.1 正向恢复电压峰值VFRM

 

VFRM是正向回复期间产生的最高电压值。该值随着结温和电流变化率的升高而增大。

 

电网 (50/60Hz)的电流变化率适中,VFRM可以忽略不计。但是在 di/dt>>1000A/μs的快速开关(IGBT、GTO和IGCT)自动换向变流器中,该值可能达到几百伏。虽然正向恢复电压仅存在几微秒,且不会显著增大二极管的总损耗,设计变流器时仍需考虑该值对开关半导体的影响。

 

针对这些应用优化的二极管图表包含了正向恢复电压和电流变化率之间的函数关系。

 

■  3.4.1.1.2 通态恢复时间tfr

 

根据DIN IEC 60747-2,tfr是指突然从关断状态切换为规定的通态时,二极管完全导通且出现静态通态电压vF所需的时间(见图20)。

 

3.4.1.2  晶闸管

 

在正向断态电压VD下通过变化率为diG/dt且强度为iGM的门极电流启动开通过程。对于光触发晶闸管,这同样适用于施加在激光二极管上的规定触发脉冲。在门极控制延迟时间tgd内,晶闸管上的阻断电压下降至90%(见图21)。最初只有门极结构周围的一小块区域导通,因此可使用初始电流密度和通态电流(di/dt)cr的临界上升率来衡量晶闸管在开通期间的稳健性。

 

大功率晶闸管参数解析之开关特性
图21.晶闸管开通过程示意图

 

a.具有关断负载电路的门极电流
b.具有快速上升通态电流的门极电流(另见3.3.1.8)

 

大功率晶闸管参数解析之开关特性
图22.门极控制延迟时间tgd与最大门极电流iGM之间的典型关系曲线

 

a.最大值 b.典型值

 

■  3.4.1.2.1 门极控制延迟时间tgd

 

tgd是指从门极电流达到其最大值

 

IGM的10%时起,到阳极-阴极电压下降至施加的正向断态电压VD的90%以下的间隔时间(见图21)。

 

门极控制延迟时间随着门极电流(对于LTTs为光功率)的增加而显著减小(见图22)。

 

在大功率晶闸管中,tgd也随VD而变。

 

数据手册中给出的值是依据DIN IEC 60747–6定义的,仅在Tvj=25°C和规定的触发脉冲下有效。

 

■  3.4.1.2.2 通态电流临界上升率(di/dt)cr

 

一旦电压因晶闸管触发而崩溃,门极结构附近的一小块阴极区域就开始传导通态电流。然后此导电区域向外扩散,扩散速度通常为0.1mm/μs,具体取决于电流密度。因此系统的载流能力最初是有限的。但是,如果不超过数据手册中规定的临界电流转换速率值,晶闸管就不会受损或损坏。对于S型晶闸管和具有大方形截面的晶闸管,门极得到分散(指条结构)。因此,这些类型表现出更高的(di/dt)cr。

 

根据DIN IEC 60747-6,临界电流上升时间(di/dt)cr与阻尼正弦半波期间加载的通态电流有关。它被定义为在以下条件下,穿过上升通态电流10%和50%这两个点的直线的角度(见图21,图47)。

 

结温:Tvj=Tvj max
正向断态电压:VD=0.67VDRM
峰值电流:iTM=2ITAVM
重复频率:f0=50Hz

 

在单独数据手册中定义了触发脉冲(另见3.3.1.8)。

 

例外:用正向断态电压VD=VDRM测试光触发晶闸管。

 

■  3.4.1.2.3 重复开通电流IT(RC)M

 

IT(RC)M是指以某个不确定上升率开通后随即产生的最大允许通态电流峰值。通常,这种通态电流是因RC缓冲电路放电产生的。最大允许重复开通电流还适用于以下达到通态电流临界上升率(di/dt)cr的电流急升情况。

 

对于英飞凌元件,适用以下值:

 

IT(RC)M=100A
例外:型号命名为T...1N或T...3N的元件

 

IT(RC)M=150A
对于超过60Hz的应用,须减小临界电流上升时间(di/dt)cr和重复开通电流IT(RC)M。应要求提供针对特定条件的详细信息。

 

■  3.4.1.2.4 断态电压临界上升率(dv/dt)cr

 

(dv/dt)cr是正向施加的电压上升率最大值,该值在0%至67%VDRM区间内几乎呈线性,此时晶闸管不会切换到通态。

 

对于电压指数上升,它是一条从最大值的0%开始,到63%结束的线,并且与指数函数相交。

 

它适用于触发电路开路和最高允许结温。超过(dv/dt)cr可能导致器件损坏。

 

例外:除过压保护(BOD)以外,光触发晶闸管还集成了dv/dt保护功能。当dv/dt升高时,此功能可使晶闸管在整个门极结构上安全触发。

 

3.4.2 关断

 

通常通过施加反向电压来启动关断功能。晶闸管或二极管的负载电流不会在过零时停止,而是作为反向恢复电流继续沿反向流动,直到载流子离开结区。

 

软度系数FRRS描述的是关断过程中电流上升率的关系。

 

3.4.2.1  恢复电荷Qr

 

Qr是半导体从通态转换到反向断态后流出半导体的电荷总量。该值随着结温、通态电流幅值和下降时间的增大而增大。除非另有说明,否则规定值仅在VR=0.5VRRM和VRM=0.8VRRM的条件下有效。为此指定了采用合适设计的RC缓冲电路。对于型号命名为T...1N、T...3N和D...1N的元件,数据手册中规定的值为最大值,该值在生产过程中经过100%测试。

 

恢复电荷Qr主要随结温Tvj和衰减电流的下降率而变(见图24和图25)。

 

大功率晶闸管参数解析之开关特性
图23.晶闸管和二极管的关断过程示意图

 

大功率晶闸管参数解析之开关特性
图24.归一化到Qr(Tvj max)的恢复电荷Qr与Tvj的典型关系曲线

 

大功率晶闸管参数解析之开关特性
图25.归一化到Qr(di/dt=10A/μs)的恢复电荷Qr与di/dt的典型关系曲线

 

3.4.2.2  反向恢复电流峰值IRM

 

IRM是反向恢复电流的最大值。Qr的关系曲线和工作条件也适用。如果图中未显示IRM,可通过以下公式大致确定IRM的值:

  

大功率晶闸管参数解析之开关特性

 

对于型号命名为T...1N、T...3N和D...1N的元件,数据手册中规定的值为最大值,该值在生产过程中经过100%测试。

 

反向恢复电流峰值IRM主要随结温Tvj和衰减电流的下降率而变(见图26和图27)。

 

大功率晶闸管参数解析之开关特性
图26.归一化到IRM(Tvj max)的反向恢复电流峰值IRM与Tvj的典型关系曲线

 

大功率晶闸管参数解析之开关特性
图27.归一化到IRM(di/dt=10A/μs)的反向恢复电流峰值IRM与di/dt的典型关系曲线

 

3.4.2.3  反向恢复时间trr

 

trr是指从电流过零时起,到穿过反向衰减恢复电流的90%和25%这两个点的直线过零时的时间间隔(见图23)。如果没有规定trr,可通过以下公式大致计算该值:

 

大功率晶闸管参数解析之开关特性

 

3.4.2.4  关断时间tq

 

tq是指从反向换向的电流过零时起,到重新施加的正向断态电压不会在没有控制脉冲的情况下使晶闸管开通时的时间间隔。

 

重新产生正向断态电压前在应用中实现的实际脉冲时间被称为延迟时间。此时间必须始终比关断时间长。关断时间主要随通态电流的下降时间、正向断态电压的上升率及结温而变(见图29到图31)。为了确定tq,所选的正向电流持续时间tp必须足够长,使晶闸管在换向点可以完全开通(见图28)。数据手册中规定的值仅对下列条件有效:

 

结温:Tvj=Tvj max
通态电流强度:iTM>ITAVM
通态电流下降率:-diT/dt=10A/μs
反向电压:VRM=100V
正向断态电压上升率:dvD/dt=20V/μs
正向断态电压:VDM=0.67VDRM

 

例外:快速晶闸管换向关断的电流下降率为-di/dt=20A/μs时,此处的dvD/dt可能有所不同,通过型号命名中的第5个字母确定(见章节2.3)。

 

对于相控晶闸管,通常规定的是关断时间的典型值,因为这类晶闸管主要用于电网换相变流器。在这些应用中,延迟时间通常比晶闸管的关断时间长得多。如果延迟时间比关断时间短,晶闸管将在不施加门极脉冲的情况下,随着正向断态电压上升而再次开通,并且可能导致器件损坏(如有必要,可按要求提供tq极限值)。

 

如果晶闸管和反向二极管(例如续流二极管)一起工作,由于换向电压较低,必须考虑更长的关断时间(通常长30%)。此外,在此类应用中,应使续流电路的电感最小,否则关断时间可能会显著增加。

 

大功率晶闸管参数解析之开关特性
图28.晶闸管的关断特性示意图

 

大功率晶闸管参数解析之开关特性
图29.归一化到Tvj max的关断时间tq与结温Tvj的典型关系曲线

 

大功率晶闸管参数解析之开关特性
图30.归一化到-diT/dtnorm的关断时间tq与关断换向下降率-diT/dt的典型关系曲线

 

大功率晶闸管参数解析之开关特性
图31.归一化到dvD/dt=20V/μs的关断时间tq与断态电压上升率dvD/dt的典型关系曲线

 

大功率晶闸管参数解析之开关特性

 


在线留言询价
推荐阅读
  • 点击次数: 1
    2025-12-05
    Qorvo的TGA2594-HM是基于Qorvo 0.15um GaN-on-SiC工艺制造的封装功率放大器。TGA2594-HM的工作频率为27至31 GHz,饱和输出功率为36.5 dBm,功率附加效率为25%,小信号增益为25 dB。TGA2594-HM采用密封的22引线7x7 mm陶瓷QFN,设计用于印刷电路板的表面安装。该封装采用铜基,提供卓越的热管理。TGA2594-HM非常适合支持商业和军事应用。两个射频端口都集成了隔直电容,完全匹配50欧姆。无铅,符合RoHS标准。特征•频率范围:27-31GHz•磅:PIN=14 dBm时为36.5 dBm•PAE:25%连续波•小信号增益:25 dB•IM3:-35 dBc@25 dBm磅/音•偏压:VD=20 V,IDQ=140 mA,VG=-3 V(典型值)•包装尺寸:7 x 7 x 1.3毫米应用•军用卫星通信终端•商用卫星通信终端•点对点数字广播•点对多点数字广播引脚配置图如有型号采购及选型需求,可直接联系兆亿微波电子元件商城。
  • 点击次数: 1
    2025-12-05
    AD9963是引脚兼容的12位低功耗MxFE®转换器,提供两个采样速率为100 MSPS的ADC通道和两个采样速率为170 MSPS的DAC通道。这些转换器针对要求低功耗和低成本的通信系统的发射和接收信号路径进行了优化。数字接口提供灵活的时钟选项。发射路径可配置为1×、2×、4×和8×插值。接收路径具有一个可旁路的2×抽取低通滤波器。引脚配置图特征• 双通道10位/12位、100 MSPS ADCSNR = 67 dB, fIN = 30.1 MHz• 双通道10位/12位、170 MSPS DACACLR = 74 dBc• 5 个辅助模拟输入/输出通道• 低功耗:• 支持全双工和半双工数据接口• 72引脚、无铅小型LFCSP封装应用无线基础设施微微蜂窝基站医疗器械超声AFE便携式仪表信号发生器、信号分析仪如有型号采购及选型需求,可直接联系兆亿微波电子元件商城。
  • 点击次数: 0
    2025-12-05
    FRAC/INT 寄存器(RO)映射当 DB[2:0] 设为 000 时,访问片内 FRAC/INT 寄存器(寄存器 RO,见图 25)。RamponDB31 = 1 启用斜坡功能;DB31 = 0 关闭斜坡功能。MUXout Control片内多路复用器由 DB[30:27] 控制,真值表见图 25。12 位整数值(INT)DB[26:15] 设置 INT 值,该值是反馈分频系数的一部分。12 位 MSB 小数值(FRAC)DB[14:3] 与 LSB FRAC 寄存器(R1)中的 DB[27:15] 共同组成 25 位 FRAC 值,送入小数插值器。DB[14:3] 为 FRAC 的高 12 位(MSB),R1 中的 DB[27:15] 为低 13 位(LSB)。LSB FRAC 寄存器(R1)映射当 DB[2:0] 设为 001 时,访问片内 LSB FRAC 寄存器(寄存器 R1,见图 26)。保留位所有保留位必须写 0,以保证正常工作。相位调整使能DB28 = 1 启用相位调整;DB28 = 0 关闭。13 位 LSB 小数值(FRAC)DB[27:15] 与 RO 寄存器中的 DB[14:3] 共同组成 25 位 FRAC 值。DB[27:15] 为 FRAC 的低 13 位(LSB),RO 中的 DB[14:3] 为高 12 位(MSB)。12 位相位值DB[14:3] 定义相位字,用于在 RF 输出端引入相对相移。写寄存器 RO 后生效。相移量 = (相位值 × 360°) / 2¹²示例:相位值 = 512 时,相移 = 45°。如有型号采购及选型需求,可直接联系兆亿微波电子元件商城。
  • 点击次数: 0
    2025-12-05
    HMC600LP4(E)对数探测器/控制器其将输入端的RF信号转换为输出端的成比例的DC电压。HMC600LP4(E)采用连续压缩拓扑结构,在宽输入频率范围内提供极高的动态范围和转换精度。随着输入功率的增加,连续放大器逐一进入饱和状态,从而精确地近似对数函数。一系列平方律检测器的输出被求和,转换为电压域并缓冲以驱动LOGOUT输出。对于检测模式,LOGOUT引脚与VSET输入端短路,将提供19mV/dB的标称对数斜率和-95 dBm的截距。HMC600LP4(E)也可用于控制器模式,在该模式下,外部电压被施加到VSET引脚,以创建AGC或APC反馈回路。特征宽动态范围:高达75 dB灵活的电源电压:+2.7V至+5.5V掉电模式温度稳定性极佳紧凑型4x4mm无引线SMT封装应用HMC600LP4/HMC600LP4E是以下中频和射频应用的理想选择:•蜂窝/PCS/3G•WiMAX、WiBro和固定无线•电源监控电路•接收机信号强度指示(RSSI)•自动增益和功率控制如有型号采购及选型需求,可直接联系兆亿微波电子元件商城。
  • 点击次数: 2
    2025-12-05
    AD8001电流反馈型放大器布局需要注意以下问题:要想让 AD8001 达到规格书所标榜的高速性能,必须仔细设计印制板布局并慎重选型。必须采用低寄生参数元件,并遵循射频/高速电路设计规范。接地层:PCB 元件面的所有空余区域应铺整块接地层,以提供低阻抗回路。输入引脚附近要将接地层挖空,减小杂散电容。电源去耦:一律使用贴片瓷片电容(见图 13)。电容一端接接地层,另一端距每个电源引脚不超过 1/8 英寸(≈3 mm)。大容量储能:再并联一只 4.7 µF–10 µF 的钽电解,用来在输出快速、大信号跳变时提供瞬态电流,距离可稍远。反馈电阻:尽量靠近反相输入引脚,使该节点杂散电容降到最小。反相端电容变化 长线传输:若信号走线长度 1 英寸(≈25 mm),应采用微带线或带状线设计,特征阻抗取 50 Ω 或 75 Ω,并在两端做好终端匹配。如有型号采购及选型需求,可直接联系兆亿微波电子元器件商城。
热门分类
关于我们

───  公众号二维码  ───

兆亿微波商城微信公众号

兆亿微波商城www.rfz1.com是一个家一站式电子元器件采购平台,致力于为广大客户提供高质量、高性能的电子元器件产品。产品覆盖功放器件、射频开关、滤波器、混频器、功分器、耦合器、衰减器、电源芯片、电路板及射频电缆等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为客户提供一站式供应链采购服务。 

  • 品质 • 正品行货 购物无忧
  • 低价 • 普惠实价 帮您省钱
  • 速达 • 专业配送 按时按需
Copyright ©2020 - 2021 兆亿微波科技有限公司
X
1

QQ设置

    1
3

SKYPE 设置

4

阿里旺旺设置

5

电话号码管理

电话 电话 电话
010-62975458
    1
6

二维码管理

    1
返回顶部
展开