嗨,欢迎来到兆亿微波官方商城!
服务热线: 010-62975458  17600099251
购物车图片 购物车 ( )
全部商品分类

电动车辆的电池管理系统和使用寿命

2021/10/13 16:49:30
浏览次数: 4

    当今电池市场的推动力不只是成本,还有对续航里程更长的车辆、更短的充电时间以及更高功能安全的需求。为了满足这些严格的电池管理系统要求,必须遵守最高标准并最大限度减少偏差。


    由于电动车辆 40% 的价格取决于电池,因此性能和电池寿命已成为 EV 品牌取得成功的主要因素。作为电池管理系统 (BMS) 领域的领导者,ADI 公司 (ADI) 与客户合作,寻找最佳关键流程来监控和管理电动车辆电池,并确保其安全性、生产力和使用寿命。


    电池管理的严格要求


    电池对设计团队提出了极高的要求,因为他们需要考虑一系列的优先事项,包括价格、可靠性和安全性。在处理提供 48 伏到 800 伏电压的 EV 系统时,您不能冒任何风险。


    为了在驾驶者踩下踏板的瞬间提供超过 100 千瓦的电能,电池系统必须在数百伏特的电压下才能高效工作。然而,锂电池只能提供几伏特的电压。为了获得足够的功率,需要将大量电池串联在一起,形成一个很长的电池堆栈。通常电动车可能使用 100 个单独的电池,在电池堆栈的顶部提供 350 伏特的电压。但这带来了一些挑战。


    在长长的电池堆栈中,如果有一个电池失效,实际上相当于所有的电池都失效了。因此,您需要监控和管理所有的电池 — 为电池充电、放电,且在车辆生命周期的每一天都要如此。锂电池不能在极限充放电情况下工作,而必须保持在非常特定的范围内,例如 15% 到 85%,否则电池性能就会下降。


    监视和管理电源


    ADI 的 BMS 可在从电池组生产到报废的整个周期中提供精确的电池测量信息。电子设备直接连接到电池堆栈中的每个电池,报告与电池电流对应的电压和温度。系统可提供充电状态和健康状态。每个电池的电流和温度必须通过中央处理器的复杂算法进行监控。ADI 内置了强大的通信接口,同时支持模块化设计(架构)。它是完全可扩展的,适用于我们不同的客户群体。


    “BMS 对电池进行持续监控,能够随时在各种温度和工作条件下提供可靠的测量精度。系统知道每时每刻的状况,并且 100% 依赖于它从 ADI 芯片接收到的信息。”Mike Kultgen ——ADI BMS总经理


    与 ADI 电池管理系统专家密切合作的好处不仅限于可以接触到种类多样的组件和产品。他们为原始设备制造商提供我们的系统级专业知识、深厚的领域知识以及多年的 BMS 实际设计经验。原始设备制造商可以提高每次充电行驶里程效率、延长电池使用寿命、确保安全性并提高品牌信任。


    ADI AUTG 副总裁 Patrick Morgan 表示,“客户告诉我们,他们需要信任产品才使用我们的产品。因此,我们在他们的现场或我们的工厂举办技术峰会,并邀请我们的关键设计师和应用工程师与他们的团队会面。我们花了一两天的时间介绍我们的发展规划,了解他们需要解决的问题,然后讨论我们将如何解决他们的特定问题。我们通过专注于合作来建立信任。”


    解决问题,寻找解决方案


    “一家总部设在亚洲的客户要求我们围绕旧有电池管理系统设计新的电池管理系统,”ADI 应用经理 Cuyler Latorraca 说,“我们研究了他们的设想、系统要求和操作环境。我们发现,他们的接地方案导致系统测量存在误差,这是业界常见的问题,然后我们采取措施消除了该误差。'


    Rimac C_Two高性能超级跑车具有 1,914 马力,0-60 mph 加速时间 1.85 秒,速度可达 258 mph。这款全电动超级跑车展现了 Rimac 的技术实力,采用了由 6960 个锂锰镍电池组成的电池组,充分发扬了真正的创新精神和激情。


    约在 10 年前,一位 21 岁的发明家在克罗地亚的一间车库里创建了 Rimac Automobili,如今公司已经发展为一家拥有 600 位员工的技术巨头。Rimac 致力于为全球汽车公司设计、开发和制造电动超级跑车和高性能电气化系统。


    凭借 ADI 公司的高精度BMS集成电路( IC ),Rimac 电动汽车可通过对电芯进行高精度测量,从电池中尽可能获取电能和电量。复杂的诊断技术使系统能够监测电池的特性、电压和温度,以随时确定电量状态。ADI 公司汽车电气化和信息娱乐部副总裁 Patrick Morgan 表示:“高准精度会直接转为快速充电时间、最大化的电池容量和里程。”


    Rimac 首席执行官 Mate Rimac 表示:“Rimac 是高性能电动汽车领域的技术强者。我们为全球众多汽车公司开发和制造关键的电气化系统,同时我们自己的超级跑车也为电动汽车的性能树立了更高的标杆。我们采用的电池管理系统是全球要求极为严苛的应用,需实现极高的精度、极短时间内的电流和电压剧烈变化以及在电池管理控制系统内的快速动态调整。我们决定在整个产品线上采用 ADI 公司的电池管理 IC 产品组合。我们已经在市场上对该类 IC 进行了对比测试,结果证实 ADI 公司的产品能够在汽车的整个生命周期内提供高精度的测量和产品可靠性,因此被我们选中。”


    着眼于未来


    “高压电池系统技术日新月异,”ADI BMS 市场经理 Greg Zimmer 说,我们在增加容量、延长使用寿命方面承受着很大的压力。业界将如何实现这一目标?在打造能够持续使用 10 年的电池的同时,我们如何从电池组中获取更多电能、增加其续航里程、支持更快的充电,并开发集中式和模块化的设计?


    ADI 不仅关注客户目前面临的问题,更着眼于未来,关注持续改进的过程。我们将继续推出能够最大限度增加每次充电续航里程、减少总重量并降低电池系统总成本的解决方案,以引领行业发展。我们拥有丰富的系统级经验和庞大的组件系列(一个集成电路中有 3 至 18 节电池,支持的电池数量选择超过其他任何竞争对手),这使我们从竞争中脱颖而出。


    我们还没有达到 BMS 的顶峰


    ADI 与原始设备制造商合作,通过架构创新来改进未来解决并沟通功率密度、精度和重量挑战的方式。我们将继续开展创新,我们的第 5 代 BMS 有望在明年投入车辆生产。


    BMS:ADI 优势


    ADI 在电池管理系统领域处于领先地位,满足 EV 市场对安全、高质量、高性能电池日益增长的需求。凭借丰富的系统级经验,以及多样化的组件产品,我们提供的合作伙伴关系将令客户受益匪浅。


    ●     行业领先的卓越精度和稳定性


    ●     通过单一组件和简化设计全面支持 ASIL D


    ●     高速、EMI 可靠、电气隔离、具有冗余的低成本菊花链,可应对故障情况


    ●     产品安装基础雄厚,有四代产品已投入现场使用


    ●     通过一系列 BMS 产品提供系统级解决方案


    对工业、环境和全球健康的影响


    普通消费者中普遍存在一个误解就是:电动汽车性能不高,比不上燃油汽车的性能。ADI 和 RIMAC 一起澄清了这一误解,并开始帮助重新确定高性能电动汽车能够达到的目标。RIMAC C_Two 高性能超级跑车凭借 ADI 的高性能 BMS,拥有惊人的 1914 马力,0-60 mph 的加速时间 1.85 秒,速度可达为 258 mph。


    ADI 和 RIMAC 不仅为高性能技术社区树立了榜样,还帮助激发消费者的热情,提高了高性能电动汽车和整体电动汽车的用户采用率。


    根据世界卫生组织的统计,空气污染是一个无声杀手,每年造成 420 万人死亡,还将人类寿命缩短了 1.8 年。通过与 RIMAC 和其他电动汽车供应商合作,ADI 公司正扫除阻碍,而且还通过减少碳排放,打造一个更清洁、更能持续发展的环境。


    ADI 一直致力于创造更环保的环境和改善全球人民健康。2019 年,ADI 公司的 BMS 产品避免了 6000 万吨二氧化碳进入大气,并继续将二氧化碳车辆排放量逐年减少 30%。6000 万吨二氧化碳相当于大约 7000 万公顷的成熟林。


    1在生产大量电池组的同时,也会产生大量可供回收利用的废旧电池组。只要电池在整个生命周期中管理得当,则耗损并不意味着报废。在考虑总拥有成本时,必须将储能装置再用于车辆以外的其他用途(也称为第二生命)考虑在内。


在线留言询价
推荐阅读
  • 点击次数: 1
    2026-02-04
    保护特性LT3042 集成了多项针对电池供电应用的保护特性。精密电流限制和热过载保护可防止 LT3042 在输出端发生过载和故障条件时损坏。正常工作时,结温不得超过 125°C(E-级、I-级)或 150°C(H-级、MP-级)。为保护 LT3042 的低噪声误差放大器,SET-TO-OUTS 保护钳位将 SET 与 OUTS 之间的最大电压限制在一定值,通过钳位的最大直流电流为 20mA。因此,对于 SET 由电压源主动驱动的应用,电压源必须限制在 20mA 或更小。此外,为限制瞬态故障条件下流过这些钳位的瞬态电流,SET 引脚电容(CSET)的最大值应限制为 22μF。LT3042 还集成了反向输入保护,IN 引脚可承受高达 -20V 的反向电压,而不会产生任何输入电流,也不会在 OUT 引脚产生负电压。该稳压器可保护自身和负载免受反向接入电池的影响。在需要备用电池的电路中,可能出现几种不同的输入/输出条件。当输入端被拉至 GND、某个中间电压或开路时,输出电压可能保持。在所有这些情况下,反向电流保护电路可防止电流从输出端流向输入端。然而,由于 OUTS-TO-SET 钳位的存在,除非 SET 引脚悬空,否则电流可以流过 SET 引脚电阻到 GND,以及通过输出过冲恢复电路流过高达 15mA 到 GND。通过在 OUTS 和 SET 引脚之间放置一个肖特基二极管(阳极在 OUTS 引脚),可以显著减小通过输出过冲恢复电路的电流。
  • 点击次数: 1
    2026-02-04
    过载恢复与许多 IC 电源稳压器一样,LT3042 集成了安全工作区(SOA)保护。SOA 保护在输入-输出差分电压大于 12V 时激活。随着输入-输出差分电压的增加,SOA 保护会降低电流限制,并将内部功率晶体管保持在安全工作区域内,适用于所有输入-输出电压值,直至 LT3042 的绝对最大额定值。LT3042 为所有输入-输出差分电压值提供一定水平的输出电流。有关详细信息,请参阅典型性能特性部分的电流限制曲线。首次上电且输入电压上升时,输出跟随输入,保持输入-输出差分电压较低,以使稳压器能够提供大输出电流并启动进入高输出负载。然而,由于电流限制折返,在高输入电压下,如果输出电压较低且负载电流较高,可能会出现问题。这种情况发生在短路移除后,或输入电压已开启后 EN/UV 引脚被拉高。在这种情况下,负载线与输出电流特性曲线在两个点相交。稳压器现在有两个稳定的工作点。由于这种双重交叉,输入电源可能需要循环降至零并重新上电以使输出恢复。其他具有折返电流限制保护的线性稳压器(如 LT1965 和 LT1963A 等)也表现出这种现象,因此这并非 LT3042 独有。
  • 点击次数: 0
    2026-02-04
    PSRR 与输入电容对于利用 LT3042 作为开关转换器后级稳压的应用,直接在 LT3042 输入端放置电容会导致交流电流(在开关频率下)在 LT3042 附近流动。这种相对较高的高频开关电流产生磁场,耦合到 LT3042 的输出端,从而降低其有效 PSRR。虽然高度依赖于 PCB 设计,但开关前级稳压器、输入电容等因素导致的 PSRR 衰减在 1MHz 时很容易超过 30dB。即使将 LT3042 从电路板上拆下,这种衰减依然存在,因为它实际上降低了 PCB 板本身的 PSRR。虽然对于传统低 PSRR 的 LDO 可以忽略,但 LT3042 的超高 PSRR 需要仔细注意高阶寄生效应,以提取稳压器提供的全部性能。为减轻 LT3042 附近高频开关电流的流动,只要开关转换器的输出电容距离 LT3042 超过一英寸,就可以完全移除 LT3042 的输入电容。磁耦合随距离增加而迅速减小。然而,如果开关前级稳压器距离 LT3042 太远(保守估计超过几英寸),且没有输入电容,与任何稳压器一样,LT3042 的输入端将在寄生 LC 谐振频率处振荡。此外,通常非常常见(且是首选做法)的做法是用一定容值的电容旁路稳压器输入端。因此,此选项在其适用范围内相当有限,并非最理想的解决方案。为此,LTC 建议使用 LT3042 演示板(DC2246B)布局以实现最佳可能的 PSRR 性能。LT3042 演示板布局利用磁场抵消技术来防止这种高频电流流动引起的 PSRR 衰减——同时保留输入电容的使用。
  • 点击次数: 0
    2026-02-04
    稳定性与输出电容LT3042 需要输出电容来保证稳定性。鉴于其高带宽,LTC 建议使用低 ESR 和低 ESL 的陶瓷电容。为保证稳定性,需要最小 4.7μF 的输出电容,ESR 低于 50mΩ,ESL 低于 2nH。鉴于使用单个 4.7μF 陶瓷输出电容即可实现的高 PSRR 和低噪声性能,更大的输出电容值仅略微改善性能,因为稳压器带宽随输出电容增加而降低——因此,使用大于最小 4.7μF 的输出电容几乎没有收益。尽管如此,更大的输出电容值确实可以减小负载瞬态期间的峰值输出偏差。注意,用于去耦 LT3042 供电的各个元件的旁路电容会增加有效输出电容。需额外考虑所用陶瓷电容的类型。它们采用多种电介质制造,每种在温度和施加电压下具有不同的特性。最常用的电介质具有 EIA 温度特性代码 Z5U、Y5V、X5R 和 X7R。Z5U 和 Y5V 电介质适合在小封装中提供高电容值,但它们往往具有更强的电压和温度系数,如图 4 和图 5 所示。当用于 5V 稳压器时,16V 10μF Y5V 电容在工作温度范围内,在施加的直流偏置电压下,有效值可低至 1μF 至 2μF。X5R 和 X7R 电介质具有更稳定的特性,因此更适合 LT3042。X7R 电介质在温度范围内具有更好的稳定性,而 X5R 成本较低且可提供更 高容值。尽管如此,使用 X5R 和 X7R 电容时仍需谨慎。X5R 和 X7R 代码仅指定工作温度范围和温度引起的最大电容变化。虽然 X5R 和 X7R 因直流偏置引起的电容变化优于 Y5V 和 Z5U 电介质,但仍可能显著降低到不足水平。如图 6 所示,电容器的直流偏置特性往往随元件封装尺寸增大而改善,但强烈建议在工作电压下验证预期电容值。附图:
  • 点击次数: 0
    2026-02-04
    一、概述SGM2211 是一款采用 CMOS 技术设计的低噪声、高 PSRR、快速瞬态响应、低压差线性稳压器。它提供 500mA 输出电流能力。工作输入电压范围为 2.7V 至 20V。可调输出电压范围为 1.2V 至 (VIN - VDROP)。其他功能包括逻辑控制关断模式、短路电流限制和热关断保护。SGM2211 具有自动放电功能,可在禁用状态下快速放电 VOUT。SGM2211 采用绿色 TDFN-2×2-6AL 和 SOT-23-5 封装。它的工作温度范围为 -40℃ 至 +125℃。二、特征工作输入电压范围:2.7V 至 20V固定输出电压:1.2V、1.5V、1.8V、2.5V、2.8V、3.0V、3.3V、3.8V、4.2V 和 5.0V可调输出:1.2V 至 (VIN - VDROP)(对于 TDFN 封装,输出电压可在初始固定输出电压之上调节)输出电流:500mA输出电压精度:25°C 时 ±1%低静态电流:43μA(典型值)低压差电压:500mA、VOUT = 5.0V 时为 360mV(典型值)低噪声:VOUT = 1.2V 时为 9.3μVRMSVOUT = 2.8V 时为 11μVRMSVOUT = 5.0V 时为 14μVRMS高 PSRR(VIN = VOUT(NOM) + 1V):1kHz 时为 100dB(典型值)10kHz 时为 83dB(典型值)100kHz 时为 52dB(典型值)1MHz 时为 55dB(典型值)电流限制和热保护优异的负载和电源瞬态响应带输出自动放电功能可采用小尺寸陶瓷电容稳定工作可编程软启动(仅 TDFN 封装)关断电源电流:1.2μA(典型值)VOUT VIN 时反向电流保护VOUT 对 GND 短路时折返电流限制保护可编程精密使能工作温度范围:-40°C 至 +125&...
热门分类
关于我们

───  公众号二维码  ───

兆亿微波商城微信公众号

兆亿微波商城www.rfz1.com是一个家一站式电子元器件采购平台,致力于为广大客户提供高质量、高性能的电子元器件产品。产品覆盖功放器件、射频开关、滤波器、混频器、功分器、耦合器、衰减器、电源芯片、电路板及射频电缆等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为客户提供一站式供应链采购服务。 

  • 品质 • 正品行货 购物无忧
  • 低价 • 普惠实价 帮您省钱
  • 速达 • 专业配送 按时按需
Copyright ©2020 - 2021 兆亿微波科技有限公司
X
1

QQ设置

    1
3

SKYPE 设置

4

阿里旺旺设置

5

电话号码管理

电话 电话 电话
010-62975458
    1
6

二维码管理

    1
返回顶部
展开