嗨,欢迎来到兆亿微波官方商城!
服务热线: 010-62975458  17600099251
购物车图片 购物车 ( )
全部商品分类

电池管理系统提高电动汽车和混合动力汽车的安全性

2021/10/13 16:54:08
浏览次数: 2

    电动汽车(EV)和混合动力电动汽车(HEV)的市场份额在2020年可能达到30%。这种市场吸引力是由于对内燃机(ICE)汽车环境影响的担忧增加以及降低燃料成本的努力。因此,汽车制造商正在投资于其车辆的电气化,从而在电池技术和电池组安全性方面取得了重大进步。


    本文阐述了电池监测集成电路如何提高电动汽车和混合动力汽车的安全性。


    电动汽车/混合动力汽车的电池管理系统


    电池驱动的汽车用不使用汽油作为能源的电动机取代了传统的内燃机。相反,电池储存电能供电动机使用。电动汽车由许多部件组成,包括:


    车载充电器,直接从电网给电池充电;


    一个DC/DC转换器,它将功率转换为较低的电压,从而为汽车电子设备(如加热器和自动车窗)提供动力;


    电源逆变器,将电池的能量传输到电动机;


    监测电池组电压、电流和温度的电池监测器和电流传感器;


    以及一个主微控制器(MCU),充当“大脑”并协调电动汽车内的所有动作。


    在典型的应用中,电池监视器堆叠成菊花链,如图2所示。每个设备通过感应线与电池芯相连,以监控电池组中的每一个电池。堆栈中的每个监视器都通过通信线路将信息从堆栈顶部传输到底部设备。为了方便主机MCU和堆栈设备之间的通信,需要桥接设备。


    电池管理系统提高了电动汽车和混合动力汽车的安全性


    使用电池监控器提高安全性


    热失控是HEV/EV系统安全问题的主要原因,因为它会导致不可阻挡的连锁反应。当温度迅速上升到400℃时,储存在电池中的能量会突然释放出来。这会导致电池变成气态,并可能引发火灾。


    热失控可由以下几个因素引起:


    如果电池在事故后受到物理损坏或有物体穿透电池组,则电池内部短路。


    一种外部短路,可以释放无限量的能量,从而使电池迅速升温。


    电池过充电超过其最大允许电压。


    高充放电电流。


    为了防止这些事件的发生,监测电池是至关重要的。电池监控器的设计旨在解决所有这些问题,并帮助电动汽车和混合动力汽车更安全。


    电压监测


    不准确报告的电压可能导致MCU对电池过度充电,可能损坏电池或导致热失控。此外,测量冗余对于提高安全性和防止故障或随时间推移而漂移至关重要。两个完全独立的模拟-数字转换器(ADC)和两个独立的路径可以帮助实现汽车安全完整性等级D(ASIL-D)符合ISO 26262标准。


    冗余设计用于检测其中一个ADC中的任何故障,并用于从独立ADC对测量精度进行双重检查。在安全诊断过程中,如果测量出现故障或偏移,将使用具有完全独立路径和基准的辅助ADC,对同一个单元的测量值进行双重检查和测量。


    以Texas Instruments公司的BQ79606A-Q1汽车精密电池监控器、平衡器和集成保护器为例:每个通道有六个专用的delta-sigma ADC和一个用于冗余的辅助ADC。该器件有一组窗口比较器,它独立于主采集路径为所有六个通道提供单元电压监测,并与主ADC路径并行工作。此比较器功能与ADC功能完全独立;因此,即使ADC功能失效,模拟比较器仍会标记欠压和过压比较器阈值的交叉。


    电池温度监测


    锂离子电池不能承受极端温度。电池组的典型容许温度在0°C到60°C之间。除了外部因素外,一些开关元件消耗功率并释放部分功率作为热量,从而导致电池外壳的热增加。监测和控制电池组温度对于维护电池组的健康和安全以及防止热失控至关重要。


    今天的电池监视器有几个通用的输入/输出(gpio)用于温度传感。BQ79606A-Q1精密电池监测器可在六通道电池组中测量多达六个恒温器,精度高,提供大量冗余,以防止温度监测故障。该设备使用一个集成的窗口比较器来监控GPIO的输入,以确定电池的温度过高和过低。


    启用时,比较器循环通过每个温度感应输入,并将电压与编程的阈值进行比较。该比较器功能与ADC功能完全独立;即使ADC功能失效,模拟比较器也会标记出温度过低和过高的比较器阈值的交叉点。主机MCU将立即通过故障线路通知MCU,以触发冷却系统,并在达到不可忍受的温度之前采取预防措施。


    通信鲁棒性和速度


    如前所述,电池监视器可堆叠成菊花链配置。每个设备将其信息通过下游的另一个设备传递到主机。堆栈中的设备和主机MCU之间的通信线路必须是稳定的,以确保在短短几毫秒内进行快速和完整的诊断。MCU应该与堆栈中的任何设备进行可靠通信,以读取、配置和执行诊断。


    然而,电动汽车的噪音环境对电池监控器提出了真正的挑战。为了解决这个问题,TI的电池监视器使用了两个引脚COM*P和COM*N的差分信号。如图3所示,BQ79606A-Q1电池管理芯片的COM*P和COM*N引脚在不同的噪声环境中被监控。


    在所有频率下,信号完整性保持不变,差分噪声消除。驱动器可承受高达±20V的噪声振幅。此外,内置于通信信号中的诊断机制有助于确保如果由于某种原因信号被破坏,设备将检测到通信故障。这种体系结构确保了与主机的可靠和快速通信。


    锂离子电池对过度充电、极端温度和物理损伤非常敏感。任何一种情况都可能导致电池的热失控。为了防止电池过充电,电池监测仪已经发展成高度安全和精确地监测电池电压。通过多重冗余对组件进行温度监控,以确保组件温度在可接受的范围内。堆栈监视器之间的通信设计为能够承受噪声环境,并确保信息安全地传输到主MCU。


在线留言询价
推荐阅读
  • 点击次数: 1
    2026-02-04
    保护特性LT3042 集成了多项针对电池供电应用的保护特性。精密电流限制和热过载保护可防止 LT3042 在输出端发生过载和故障条件时损坏。正常工作时,结温不得超过 125°C(E-级、I-级)或 150°C(H-级、MP-级)。为保护 LT3042 的低噪声误差放大器,SET-TO-OUTS 保护钳位将 SET 与 OUTS 之间的最大电压限制在一定值,通过钳位的最大直流电流为 20mA。因此,对于 SET 由电压源主动驱动的应用,电压源必须限制在 20mA 或更小。此外,为限制瞬态故障条件下流过这些钳位的瞬态电流,SET 引脚电容(CSET)的最大值应限制为 22μF。LT3042 还集成了反向输入保护,IN 引脚可承受高达 -20V 的反向电压,而不会产生任何输入电流,也不会在 OUT 引脚产生负电压。该稳压器可保护自身和负载免受反向接入电池的影响。在需要备用电池的电路中,可能出现几种不同的输入/输出条件。当输入端被拉至 GND、某个中间电压或开路时,输出电压可能保持。在所有这些情况下,反向电流保护电路可防止电流从输出端流向输入端。然而,由于 OUTS-TO-SET 钳位的存在,除非 SET 引脚悬空,否则电流可以流过 SET 引脚电阻到 GND,以及通过输出过冲恢复电路流过高达 15mA 到 GND。通过在 OUTS 和 SET 引脚之间放置一个肖特基二极管(阳极在 OUTS 引脚),可以显著减小通过输出过冲恢复电路的电流。
  • 点击次数: 1
    2026-02-04
    过载恢复与许多 IC 电源稳压器一样,LT3042 集成了安全工作区(SOA)保护。SOA 保护在输入-输出差分电压大于 12V 时激活。随着输入-输出差分电压的增加,SOA 保护会降低电流限制,并将内部功率晶体管保持在安全工作区域内,适用于所有输入-输出电压值,直至 LT3042 的绝对最大额定值。LT3042 为所有输入-输出差分电压值提供一定水平的输出电流。有关详细信息,请参阅典型性能特性部分的电流限制曲线。首次上电且输入电压上升时,输出跟随输入,保持输入-输出差分电压较低,以使稳压器能够提供大输出电流并启动进入高输出负载。然而,由于电流限制折返,在高输入电压下,如果输出电压较低且负载电流较高,可能会出现问题。这种情况发生在短路移除后,或输入电压已开启后 EN/UV 引脚被拉高。在这种情况下,负载线与输出电流特性曲线在两个点相交。稳压器现在有两个稳定的工作点。由于这种双重交叉,输入电源可能需要循环降至零并重新上电以使输出恢复。其他具有折返电流限制保护的线性稳压器(如 LT1965 和 LT1963A 等)也表现出这种现象,因此这并非 LT3042 独有。
  • 点击次数: 0
    2026-02-04
    PSRR 与输入电容对于利用 LT3042 作为开关转换器后级稳压的应用,直接在 LT3042 输入端放置电容会导致交流电流(在开关频率下)在 LT3042 附近流动。这种相对较高的高频开关电流产生磁场,耦合到 LT3042 的输出端,从而降低其有效 PSRR。虽然高度依赖于 PCB 设计,但开关前级稳压器、输入电容等因素导致的 PSRR 衰减在 1MHz 时很容易超过 30dB。即使将 LT3042 从电路板上拆下,这种衰减依然存在,因为它实际上降低了 PCB 板本身的 PSRR。虽然对于传统低 PSRR 的 LDO 可以忽略,但 LT3042 的超高 PSRR 需要仔细注意高阶寄生效应,以提取稳压器提供的全部性能。为减轻 LT3042 附近高频开关电流的流动,只要开关转换器的输出电容距离 LT3042 超过一英寸,就可以完全移除 LT3042 的输入电容。磁耦合随距离增加而迅速减小。然而,如果开关前级稳压器距离 LT3042 太远(保守估计超过几英寸),且没有输入电容,与任何稳压器一样,LT3042 的输入端将在寄生 LC 谐振频率处振荡。此外,通常非常常见(且是首选做法)的做法是用一定容值的电容旁路稳压器输入端。因此,此选项在其适用范围内相当有限,并非最理想的解决方案。为此,LTC 建议使用 LT3042 演示板(DC2246B)布局以实现最佳可能的 PSRR 性能。LT3042 演示板布局利用磁场抵消技术来防止这种高频电流流动引起的 PSRR 衰减——同时保留输入电容的使用。
  • 点击次数: 0
    2026-02-04
    稳定性与输出电容LT3042 需要输出电容来保证稳定性。鉴于其高带宽,LTC 建议使用低 ESR 和低 ESL 的陶瓷电容。为保证稳定性,需要最小 4.7μF 的输出电容,ESR 低于 50mΩ,ESL 低于 2nH。鉴于使用单个 4.7μF 陶瓷输出电容即可实现的高 PSRR 和低噪声性能,更大的输出电容值仅略微改善性能,因为稳压器带宽随输出电容增加而降低——因此,使用大于最小 4.7μF 的输出电容几乎没有收益。尽管如此,更大的输出电容值确实可以减小负载瞬态期间的峰值输出偏差。注意,用于去耦 LT3042 供电的各个元件的旁路电容会增加有效输出电容。需额外考虑所用陶瓷电容的类型。它们采用多种电介质制造,每种在温度和施加电压下具有不同的特性。最常用的电介质具有 EIA 温度特性代码 Z5U、Y5V、X5R 和 X7R。Z5U 和 Y5V 电介质适合在小封装中提供高电容值,但它们往往具有更强的电压和温度系数,如图 4 和图 5 所示。当用于 5V 稳压器时,16V 10μF Y5V 电容在工作温度范围内,在施加的直流偏置电压下,有效值可低至 1μF 至 2μF。X5R 和 X7R 电介质具有更稳定的特性,因此更适合 LT3042。X7R 电介质在温度范围内具有更好的稳定性,而 X5R 成本较低且可提供更 高容值。尽管如此,使用 X5R 和 X7R 电容时仍需谨慎。X5R 和 X7R 代码仅指定工作温度范围和温度引起的最大电容变化。虽然 X5R 和 X7R 因直流偏置引起的电容变化优于 Y5V 和 Z5U 电介质,但仍可能显著降低到不足水平。如图 6 所示,电容器的直流偏置特性往往随元件封装尺寸增大而改善,但强烈建议在工作电压下验证预期电容值。附图:
  • 点击次数: 0
    2026-02-04
    一、概述SGM2211 是一款采用 CMOS 技术设计的低噪声、高 PSRR、快速瞬态响应、低压差线性稳压器。它提供 500mA 输出电流能力。工作输入电压范围为 2.7V 至 20V。可调输出电压范围为 1.2V 至 (VIN - VDROP)。其他功能包括逻辑控制关断模式、短路电流限制和热关断保护。SGM2211 具有自动放电功能,可在禁用状态下快速放电 VOUT。SGM2211 采用绿色 TDFN-2×2-6AL 和 SOT-23-5 封装。它的工作温度范围为 -40℃ 至 +125℃。二、特征工作输入电压范围:2.7V 至 20V固定输出电压:1.2V、1.5V、1.8V、2.5V、2.8V、3.0V、3.3V、3.8V、4.2V 和 5.0V可调输出:1.2V 至 (VIN - VDROP)(对于 TDFN 封装,输出电压可在初始固定输出电压之上调节)输出电流:500mA输出电压精度:25°C 时 ±1%低静态电流:43μA(典型值)低压差电压:500mA、VOUT = 5.0V 时为 360mV(典型值)低噪声:VOUT = 1.2V 时为 9.3μVRMSVOUT = 2.8V 时为 11μVRMSVOUT = 5.0V 时为 14μVRMS高 PSRR(VIN = VOUT(NOM) + 1V):1kHz 时为 100dB(典型值)10kHz 时为 83dB(典型值)100kHz 时为 52dB(典型值)1MHz 时为 55dB(典型值)电流限制和热保护优异的负载和电源瞬态响应带输出自动放电功能可采用小尺寸陶瓷电容稳定工作可编程软启动(仅 TDFN 封装)关断电源电流:1.2μA(典型值)VOUT VIN 时反向电流保护VOUT 对 GND 短路时折返电流限制保护可编程精密使能工作温度范围:-40°C 至 +125&...
热门分类
关于我们

───  公众号二维码  ───

兆亿微波商城微信公众号

兆亿微波商城www.rfz1.com是一个家一站式电子元器件采购平台,致力于为广大客户提供高质量、高性能的电子元器件产品。产品覆盖功放器件、射频开关、滤波器、混频器、功分器、耦合器、衰减器、电源芯片、电路板及射频电缆等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为客户提供一站式供应链采购服务。 

  • 品质 • 正品行货 购物无忧
  • 低价 • 普惠实价 帮您省钱
  • 速达 • 专业配送 按时按需
Copyright ©2020 - 2021 兆亿微波科技有限公司
X
1

QQ设置

    1
3

SKYPE 设置

4

阿里旺旺设置

5

电话号码管理

电话 电话 电话
010-62975458
    1
6

二维码管理

    1
返回顶部
展开