嗨,欢迎来到兆亿微波官方商城!
服务热线: 010-62975458  17600099251
购物车图片 购物车 ( )
全部商品分类

关于 ESD 和 RF 设备您需要了解什么

2021/10/29 13:45:52
浏览次数: 9

静电放电 (ESD) 现象从一开始就存在。我们第一次接触 ESD 往往是在孩童时代,在干燥的冬日触碰金属门把手时,会有种触电的感觉——这就是静电放电。这种短暂的不适感通常对人类来说不是问题,但是即使是少量的 ESD 也有可能会损毁敏感电路。   


手机设计人员一直都面临着何时以及如何解决这一自然现象的挑战。本博客解释了系统级 ESD 保护为何如此重要,同时使大家能够了解提高移动设备中系统级 ESD 保护的测试模型和战略。


ESD 模型和波形的测试


人体和衣服一天可存储 500 V 至 2,500 V 静电电荷,但是人类只能感受到 3,000 至 4,000 V 的 ESD 脉冲。这远高于电子电路受损的水平,即使人类无法检测到。


设计人员必须从多方面解决 ESD 问题,对组件制造商来说,是在其设计阶段和设计工作结束之时。简而言之,ESD 保护需要一种多层面方案。


通常,集成电路 (IC) 制造商按照 ESD 行业标准设计、测试和验证其 IC。这可防止在 IC 生产或在 PC 板上组装时出现物理损坏。针对 ESD,通常进行的两种测试包括:


●     人体模型 (HBM)。这种测试模拟人体通过接触 IC 释放所积累的静电的 ESD 事件。采用一个带电的 100 pF 电容和一个 1.5 k? 放电电阻进行模拟。


关于 ESD 和 RF 设备您需要了解什么


●     带电设备模型 (CDM)。这种测试模拟在生产设备和工艺中发生的充电和放电事件。设备在一些摩擦工艺中或静电感应过程中获得电荷,然后突然接触到一个接地物体或表面。


关于 ESD 和 RF 设备您需要了解什么


虽然设备级测试有助于衡量 IC 的 ESD 稳健性,但系统级测试可衡量现场的电子设备保护(即原始设备制造商 [OEM] 设备或终端产品)。


为了更好地了解最终产品所需的 ESD 保护,OEM 应采用系统级 ESD 方法进行设计,然后按照国际电工委员会 (IEC) ESD 标准 61000-4-2 测试最终产品。IEC 61000-4-2 被视为终端产品 ESD 测试和评级的行业标准。该测试可确定系统对现场外部 ESD 事件的易损性。


下图比较了三种脉冲的能量和峰值电流:


●     系统级 IEC 61000-4-2


●     设备级 HBM


●     设备级 CDM


IEC ESD 事件脉冲显然更强,因此系统中的设备更加难以通过。尽管设备级测试(HBM 和 CDM)比较有用,且可提供 ESD 稳健性的基准,但在系统级 IEC 测试期间并不总是能够确定生存性。


关于 ESD 和 RF 设备您需要了解什么

为进一步展示这一概念,下表显示了组件测试和系统级 IEC 测试之间的差异。大家可以看到,差异很大,系统应力水平更高。总而言之:较之于设备级设计,系统设计必须满足更严苛的要求。


关于 ESD 和 RF 设备您需要了解什么


测试不充分的问题


在开发阶段进行系统级 ESD 测试可能会是个问题。例如,测试评估/不完整板组件上的 ESD 并不能代表所有情况。这些组件的结果并不保证完整系统的最终结果。


设备级 ESD 测试(即 HBM 和 CDM)旨在通过适当的 ESD 控制在工厂生成适合分立式组件的可重复且可再现的结果。这就是所谓的 ESD 保护区 (EPA)。然而,这些测试并不是为了解决现实世界中 EPA 范围之外的全部产品级 ESD 事件。


实现产品稳健性的关键:系统级 ESD


相反,ESD 稳健型系统设计的关键是要考虑 ESD 在系统中的影响。为了获得系统级视角,设计人员必须了解并解决以下问题:


●     系统级应力事件及其对整个产品的影响。设备级 ESD 测试结果只能为系统 ESD 设计提供非常少的信息,因为它们无法反映电子设备在 IEC ESD 事件期间经历了什么。


●     系统中板级相互作用,以及在 ESD 应力作用下与电子部件外部接触的引脚瞬态行为。


●     高效的表征化方法(如组件级传输线路脉冲 (TLP) 数据),用于分析 IC、板和系统的相互作用。


系统级 ESD 保护战略取决于物理设计、产品要求和产品成本。


最佳方法:系统高效 ESD 设计 (SEED)


系统高效 ESD 设计 (SEED)是一种系统级方法,考虑了系统中所有组件的瞬态响应。SEED 方法还包括对 IC 引脚上 PC 板外部端口施加的 IEC 应力的物理影响。 


SEED 是一种实现板载和片上 ESD 保护的协同设计方法。利用 SEED,您可以分析和实现系统级 ESD 稳健性。该方法要求对 ESD 应力事件期间外部 ESD 脉冲之间的相互作用、完整的系统级板设计以及设备引脚特性有一个全面的了解。


SEED 方法是实现对称且稳健的系统级 ESD 保护的最佳方法。如下图所示,SEED 利用以下信息设计系统级 ESD 保护:


●     准静态 TLP 电流电压 (I-V) 曲线数据


●     瞬态模拟


●     S 参数 PC 板数据


●     IC I-V 电路测量 

关于 ESD 和 RF 设备您需要了解什么


我们将在本博客系列的第 2 部分和第 3 部分详细介绍 SEED。这一部分主要是对 SEED 进行概述:


●     PC 板的 ESD 保护为一级保护,可防止对 IC 或系统造成物理损坏。


●     片上保护发挥二级保护的作用。


SEED 的基本概念旨在防止具有损坏性质的 ESD 脉冲抵达内部 IC 引脚。通过执行和分析 ESD 系统级模拟可实现适当的系统级 ESD 设计。


接下来:RF 前端设计的 ESD 保护战略


众所周知,在手机设计中战略性地实现 ESD 至关重要。这样做可缩短设计工程周期时间,减少 ESD 故障和研发开支。


在本博客系列的后续博客中,我们将深入探讨 ESD 保护组件以及减少 ESD 对移动 RF 设计影响的不同战略。第 3 部分将解释如何利用模拟和建模确定系统级 ESD 保护。


在线留言询价
推荐阅读
  • 点击次数: 1
    2025-12-17
    ZVS 隔离型转换器模块系列为高密度隔离式 DC-DC 转换器,采用零电压开关(ZVS)拓扑结构。28V 输入系列支持 16V 至 50V 的宽输入电压范围,提供 50W 输出功率,功率密度高达 334W/in³。这些转换器模块支持表面贴装,尺寸仅为 0.5 英寸见方,相比传统方案可节省约 50% 的 PCB 面积。模块开关频率高达 900kHz,允许使用更小的输入和输出滤波元件,从而进一步减小系统整体尺寸和成本。输出电压通过高性能隔离磁反馈方案采样并反馈至内部控制器,具备高带宽和良好的共模噪声抑制能力。PI31xx-00-HVMZ 系列无需外部反馈补偿,仅需极少外部元件即可构成完整解决方案。功能丰富,包括输出电压微调、输出过压保护、可调软启动、自动重启型过流保护、输入欠压/过压锁定,以及温度监控与保护功能(提供与芯片温度成比例的模拟电压,并支持关断与报警)。特性与优势效率高达 88%高开关频率降低输入滤波需求,减少输出电容专有“双钳位”ZVS 升降压拓扑专有隔离磁反馈技术小封装尺寸(0.57 in²),节省 PCB 面积超低厚度(0.265 英寸)宽输入电压范围:16–50V支持开关控制(正逻辑)宽范围输出电压微调:+10% / –20%(多数型号)温度监控(TM)与过温保护(OTP)输入欠压锁定(UVLO)、过压锁定(OVLO)与输出过压保护(OVP)自动重启型过流保护可调软启动输入/输出之间隔离电压达 2250V
  • 点击次数: 1
    2025-12-17
    使用 S 控制寄存器组进行 S 引脚脉冲控制LTC6811 的 S 引脚可用作简单的串行接口,特别适用于控制 Linear Technology 的 LT8584——一款专为大型电池组主动均衡设计的单片反激式 DC/DC 转换器。LT8584 具有多种工作模式,这些模式通过串行接口进行控制。LTC6811 可通过在每个 S 引脚上发送特定脉冲序列,与 LT8584 通信并选择其工作模式。S 控制寄存器组用于设定 12 个 S 引脚的行为,每个 4 位(nibble)定义一个 S 引脚应输出高电平、低电平,或发送 1 至 7 个脉冲的序列。表 24 列出了可发送至 LT8584 的 S 引脚行为选项。S 引脚脉冲以 6.44kHz 的频率输出(周期为 155μs),脉冲宽度为 77.6μs。脉冲序列在发送 STSCTRL 命令后启动,前提是命令的 PEC(包错误校验)正确匹配。主机可继续提供 SCK 时钟,以轮询脉冲执行状态。该轮询机制与 ADC 轮询功能类似:在脉冲序列完成前,数据输出将保持逻辑低电平。在 S 引脚脉冲执行期间,新的 STSCTRL 或 WRSCTRL 命令将被忽略。可使用 PLADC 命令来判断 S 引脚脉冲是否已完成。若 WRSCTRL 命令及其 PEC 正确接收,但数据 PEC 不匹配,则 S 控制寄存器组将被清零。如果配置寄存器组中的某个 DCC 位被置位,LTC6811 将强制将对应的 S 引脚拉低,无论 S 控制寄存器组的设置如何。因此,在使用 S 控制寄存器组时,主机应将 DCC 位保持为 0。CLRSCTRL 命令可用于快速将 S 控制寄存器组清零(全部置为 0),并强制脉冲控制逻辑释放对 S 引脚的控制。该命令在汽车应用中可用于缩短诊断控制循环时间。
  • 点击次数: 2
    2025-12-17
    C2000™ 32 位微控制器针对处理、感应和驱动进行了优化,可提高实时控制应用(如工业电机驱动器、光伏逆变器和数字电源、电动汽车和运输、电机控制以及感应和信号处理)的闭环性能。C2000 系列包括高级性能 MCU 和入门级性能 MCU。F2803x 系列微控制器将 C28x 内核和控制律加速器 (CLA) 的性能与高度集成的控制外设整合到低引脚数的器件中。该系列器件的代码与基于 C28x 的旧版代码兼容,同时具有较高的模拟集成度。一个内部稳压器实现了单电源轨运行。HRPWM 模块经过强化,可实现双边沿控制(调频)。增设了具有 10 位内部基准的模拟比较器,可直接进行路由以控制 PWM 输出。ADC 可在 0V 至 3.3V 的固定满量程范围内实施转换,支持 VREFHI/VREFLO 基准的比例运算。ADC 接口已针对低开销和延迟进行了优化。应用• 空调室外机• 电梯门自动启闭装置驱动控制• 直流/直流转换器• 逆变器和电机控制• 车载充电器 (OBC) 和无线充电器• 自动分拣设备• 纺织机• 焊接机• 交流充电(桩)站• 直流充电(桩)站• 电动汽车充电站电源模块• 车辆无线充电模块• 能量存储电源转换系统 (PCS)• 微型逆变器• 太阳能电源优化器• 串式逆变器• 交流驱动器控制模块• 线性电机分段控制器• 伺服驱动器功率级模块• 交流输入 BLDC 电机驱动器• 直流输入 BLDC 电机驱动器• 工业交流-直流• 三相 UPS• 商用网络和服务器 PSU• 商用通信电源整流器
  • 点击次数: 1
    2025-12-17
    安全注意事项LTM4643 模块未提供从输入(Vin)到输出(Vout)的电气隔离(即无 galvanic isolation)。模块内部未集成保险丝。如有必要,应在外部为每个模块配置一个慢断型保险丝,其额定电流应为最大输入电流的两倍,以防止模块在发生灾难性故障时受损。该器件支持热关断和过流保护功能。布局检查清单 / 示例尽管 LTM4643 具备高度集成性,使 PCB 布局变得简单,但为优化其电气性能与热性能,仍需注意以下布局建议:在 PCB 上使用大面积铜箔覆盖高电流路径,包括 ViN1 至 ViN4、GND、VouT1 至 VouT4。这有助于降低 PCB 导通损耗并减少热应力。将高频陶瓷输入与输出电容尽可能靠近 ViN、GND 和 VouT 引脚放置,以最小化高频噪声。在模块下方设置专用的电源接地层(power ground layer)。为降低过孔的导通损耗并减少模块热应力,应使用多个过孔连接顶层与其他电源层。请勿在焊盘上直接放置过孔,除非这些过孔已被填充(capped)或覆盖电镀(plated over)。为连接到信号引脚的元件设置独立的信号地(SGND)铜区,并在模块下方将 SGND 与 GND 连接。若多个模块并联使用,应将 Vout、VFB 和 COMP 引脚连接在一起。建议使用内层将这些引脚紧密连接。TRACK/SS 引脚可连接至一个公共电容,用于实现稳压器的软启动。在信号引脚处引出测试点,便于监测。下图是推荐的一种布局式示例,仅供参考。
  • 点击次数: 1
    2025-12-17
    LTM4643 是一款四路输出的独立非隔离型开关模式 DC/DC 电源模块,封装尺寸为 9mm × 15mm × 1.82mm,超轻薄设计。该模块具备四个独立的稳压通道,每个通道在仅需少量外部输入输出电容的情况下,可持续输出高达 3A 的电流。每个稳压器可在 4V 至 20V 的输入电压范围内,通过单个外部电阻将输出电压精确设定在 0.6V 至 3.3V 之间。若使用外部偏置电压,该模块最低可在 2.375V 的输入电压下工作。LTM4643 集成了四个独立的恒定频率控制、导通时间谷值电流模式稳压器、功率 MOSFET、电感器及其他支持性分立元件。典型开关频率设定为 1.2MHz。对于对开关噪声敏感的应用,该 μModule 稳压器可通过外部时钟信号在 850kHz 至 1.5MHz 范围内实现同步。采用电流模式控制与内部反馈环路补偿,使 LTM4643 模块在宽范围的输出电容条件下(即使全部使用陶瓷电容)仍具备良好的稳定性裕度与瞬态响应性能。电流模式控制还提供了将任意独立稳压通道并联的灵活性,并可实现精确的电流共享。通过内置的通道间时钟交错功能,LTM4643 可轻松配置为 2+2、3+1 或四通道并联运行,为多轨 POL(负载点)应用提供更高的设计灵活性。此外,LTM4643 提供 CLKIN 与 CLKOUT 引脚,用于频率同步或多相并联多个器件,最多支持 8 相级联同步运行。电流模式控制还支持逐周期的快速电流监测。在过流条件下,模块提供折返式限流保护,当 VeB 电压下降时,将电感谷值电流限制为原始值的约 40%。内部过压与欠压比较器将在输出反馈电压偏离稳压点 ±10% 范围时,将开漏输出的 PGOOD 引脚拉低。在过压(OV)与欠压(UV)条件下,模块强制进入连续导通模式(CCM),但在启动阶段,当 TRACK 引脚电压上升至 0.6...
热门分类
关于我们

───  公众号二维码  ───

兆亿微波商城微信公众号

兆亿微波商城www.rfz1.com是一个家一站式电子元器件采购平台,致力于为广大客户提供高质量、高性能的电子元器件产品。产品覆盖功放器件、射频开关、滤波器、混频器、功分器、耦合器、衰减器、电源芯片、电路板及射频电缆等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为客户提供一站式供应链采购服务。 

  • 品质 • 正品行货 购物无忧
  • 低价 • 普惠实价 帮您省钱
  • 速达 • 专业配送 按时按需
Copyright ©2020 - 2021 兆亿微波科技有限公司
X
1

QQ设置

    1
3

SKYPE 设置

4

阿里旺旺设置

5

电话号码管理

电话 电话 电话
010-62975458
    1
6

二维码管理

    1
返回顶部
展开