嗨,欢迎来到兆亿微波官方商城!
服务热线: 010-62975458  17600099251
购物车图片 购物车 ( )
全部商品分类

运算放大器输入偏置电流

2021/12/30 11:13:34
浏览次数: 6

理想情况下,并无电流进入运算放大器的输入端。而实际操作中,始终存在两个输入偏置电流,即IB+和IB-(参见图1)。


输入偏置电流定义


理想情况下,并无电流进入运算放大器的输入端。而实际操作中,始终存在两个输入偏置电流,即IB+和IB-(参见图1)。


运算放大器输入偏置电流


图1:运算放大器输入偏置电流


IB的值大小不一,在静电计AD549中低至60 fA(每三毫秒通过一个电子),而在某些高速运算放大器中可达数十微安。运算放大器采用由双极性结型晶体管(BJT)或FET长尾对构成的简单输入结构时,偏置电流为单向流动。而采用更为复杂的输入结构时(如偏置补偿和电流反馈运算放大器),偏置电流可能是两个或以上内部电流源之间的差分电流,且可能是双向流动。


对运算放大器用户来说,偏置电流是个问题,因为当其流过外部阻抗时会产生电压,进而导致系统误差增加。以1 MΩ源阻抗驱动同相单位增益缓冲器为例,如果IB为10 nA,则会额外引入10 mV的误差。这种误差度在任何系统中都不容忽略。


或者,如果设计人员完全忘记考虑IB并且采用容性耦合,那么电路将根本不能工作!或者,如果IB足够小,那么电路或许能在电容充电期间短暂工作,结果导致更多的问题。因此,我们应当明白,任何运算放大器电路中都不能忽略IB的影响,仪表放大器电路中亦是如此。


输入失调电流


“输入失调电流”IOS是IB–和IB+之差,即IOS = IB+ ? IB–。另请注意,两个偏置电流首先必须基本上具有相当良好的匹配性,IOS才有意义。多数电压反馈(VFB)型运算放大器都是如此。不过,针对电流反馈(CFB)型运算放大器等来谈IOS就没什么意义,因为这两个电流完全不匹配。


需要注意的是,对于由两个并联级构成的轨到轨输入级,当共模电压经过跃迁区时,偏置电流方向会发生改变。因此,这类器件的偏置电流和失调电流尤其难以标定,根本不可能简单地给出最大正值/负值。


内部偏置电流消除电路


如果通过内部电流源提供该必要的偏置电流,如下文图2所示,那么基极电流与电流源之间的差分电流将是流入输入端的唯一“外部”电流,它可能相当小。


运算放大器输入偏置电流


图2:偏置电流补偿双极性输入级


多数现代精密双极性输入级运算放大器都会采用某种方式的内部偏置电流补偿,大家熟悉的OP07和OP27系列就是如此。


偏置电流补偿输入级具有简单双极性输入级的许多优良特性,例如:低电压噪声、低失调电压和低漂移。此外,它还提供具有相当温度稳定性的低偏置电流。但是,其电流噪声特性不是非常好,而且偏置电流匹配较差。


后两个副作用源于外部偏置电流,它是补偿电流源与输入晶体管基极电流的“差值”。这两个电流不可避免地具有噪声。由于无相关性,两个噪声以方和根形式相加(但直流电流采用减法)。


所产生的外部偏置电流为两个近乎相等的电流之差,因此净电流的极性是不确定的。所以,偏置补偿运算放大器的偏置电流可能不仅不匹配,而且有可能反向流动!多数应用中这点并不重要,但在有些应用中却会产生无法预料的影响(例如,在用偏置补偿运算放大器构建的采样保持(SHA)电路中,压降可能具有两种极性之一)。


许多情况下,运算放大器的数据手册中没有提到偏置电流补偿特性,而且不会提供原理示意图。通过检查偏置电流规格,很容易确定是否采用了偏置电流补偿。如果偏置电流用'±'值表示,则运算放大器非常有可能对偏置电流进行了补偿。注意,通过检查“失调电流”规格(偏置电流之差),很容易验证这一点。如果存在内部偏置电流补偿,则失调电流的幅度与偏置电流相同。如果没有偏置电流补偿,则失调电流一般比偏置电流至少低10倍。注意,无论偏置电流的确切幅度是多少,上述关系一般都成立。


如前所述,对于轨到轨输入级,当共模电压经过交越区时,偏置电流方向会发生改变。因此,这类器件的偏置电流和失调电流尤其难以指定,根本不可能简单地给出最大正值/负值。


消除偏置电流影响(运算放大器外部)


当运算放大器的偏置电流匹配良好时(如前所述,就像简单的双极性输入级运算放大器那样,但“不”包括内部偏置补偿运算放大器),偏置补偿电阻R3 (R3=R1||R2)会在同相输入中引入压降,以便与反相输入中R1和R2并联组合上的压降匹配并实现补偿。这样可以最大程度地减少额外的失调电压误差,如图3所示。注意,如果R3大于1 kΩ,则应使用电容进行旁路,以免噪声影响。另请注意,当偏置电流匹配不佳时,这种消除偏置方式毫无用处,事实上会更糟。


运算放大器输入偏置电流


图3:消除应用中的输入偏置电流影响


测量输入失调电流和输入偏置电流


可以利用图4中的测试电路来测量输入偏置电流(或输入失调电压)。要测量IB,应插入大电阻RS与待测输入端串联,从而产生大小等于IB×RS的显著额外失调电压。如果之前已经测量并记录实际的VOS,则可以确定因RS变化而导致的VOS明显变化,进而可以轻松计算出IB。这样即可得出IB+和IB–的值。IB的额定值是这两个电流的平均值,即IB = (IB+ + IB–)/2。


通常,有效RS值的变化范围为100 kΩ(双极性运算放大器)至1000 MΩ(某些FET输入器件)。

运算放大器输入偏置电流


图4:测量输入偏置电流


对于极低的输入偏置电流,则必须采用积分技术来测量。具体方法是利用所考虑的偏置电流给电容充电,然后测量电压变化速率。如果电容和一般电路泄露可以忽略不计(电流小于10 fA时,很难测量),则可直接根据测试电路的输出变化速率计算出该电流。基本原理如下面图5所示。断开一个开关,闭合另一个开关,可以分别测得IB+或IB–。


运算放大器输入偏置电流


图5:测量极低的偏置电流


很明显,C只可使用高品质的电容电介质,如特氟龙或聚丙烯等类型。


参考文献:


1. Hank Zumbahlen, Basic Linear Design, Analog Devices, 2006, ISBN: 0-915550-28-1. Also available as Linear Circuit Design Handbook, Elsevier-Newnes, 2008, ISBN-10: 0750687037, ISBN-13: 978-0750687034. Chapter 1.


2. Walter G. Jung, Op Amp Applications, Analog Devices, 2002, ISBN 0-916550-26-5, Also available as Op Amp Applications Handbook, Elsevier/Newnes, 2005, ISBN 0-7506-7844-5. Chapter 1. 


在线留言询价
推荐阅读
  • 点击次数: 1
    2026-02-05
    容纳 AD9834 的印刷电路板(PCB)应设计为将模拟部分和数字部分分开,并限制在电路板的特定区域。这有助于使用可以轻松分离的地平面。最小蚀刻技术通常是地平面的最佳选择,因为它提供最佳屏蔽。数字地和模拟地平面应仅在一个点连接。如果 AD9834 是唯一需要 AGND 到 DGND 连接的器件,地平面应在 AD9834 的 AGND 和 DGND 引脚处连接。如果 AD9834 处于需要多个器件进行 AGND 到 DGND 连接的系统中,连接应仅在一个点进行,建立尽可能靠近 AD9834 的星形接地点。避免在器件下方走数字线,因为这些线会将噪声耦合到芯片上。模拟地平面应允许在 AD9834 下方运行以避免噪声耦合。AD9834 的电源线应使用尽可能大的走线,以提供低阻抗路径并减少电源毛刺的影响。快速开关信号(如时钟)应使用数字地进行屏蔽,以避免将噪声辐射到电路板的其他部分。避免数字和模拟信号交叉。电路板两侧的走线应相互垂直运行,以减少贯穿电路板的馈通效应。微带技术是最佳选择,但对于双面电路板并不总是可行。在这种技术中,电路板的元件侧专用于地平面,信号放置在另一侧。良好的去耦很重要。AD9834 的模拟和数字电源是独立的,并分别引出以最小化器件模拟部分和数字部分之间的耦合。所有模拟和数字电源应分别对 AGND 和 DGND 进行去耦,使用 0.1 µF 陶瓷电容与 10 µF 钽电容并联。为了达到去耦电容的最佳性能,应将它们尽可能靠近器件放置,理想情况下紧贴器件。在系统中,如果使用公共电源为 AD9834 的 AVDD 和 DVDD 供电,建议使用系统的 AVDD 电源。该电源应在 AD9834 的 AVDD 引脚和 AGND 之间具有推荐的模拟电源去耦,以及在 DVDD 引脚和 DGND 之间具有推荐的数字电源去耦电容。比较器的正常工作需要良好的布局策略...
  • 点击次数: 0
    2026-02-05
    AD9834是一款75 MHz、低功耗DDS器件,能够产生高性能正弦波和三角波输出。其片内还集成一个比较器,支持产生方波以用于时钟发生。当供电电压为3 V时,其功耗仅为20 mW,非常适合对功耗敏感的应用。 AD9834提供相位调制和频率调制功能。频率寄存器为28位;时钟速率为75 MHz,可以实现0.28 Hz的分辨率。同样,时钟速率为1 MHz时,AD9834可以实现0.004 Hz的分辨率。影响频率和相位调制的方法是通过串行接口加载寄存器,然后通过软件或FSELECT/PSELECT引脚切换寄存器。AD9834通过一个三线式串行接口写入数据。该串行接口能够以最高40 MHz的时钟速率工作,并且与DSP和微控制器标准兼容。该器件采用2.3 V至5.5 V电源供电。模拟和数字部分彼此独立,可以采用不同的电源供电;例如,AVDD可以是5 V,而DVDD可以是3 V。AD9834具有掉电引脚(SLEEP),支持从外部控制掉电模式。器件中不用的部分可以掉电,以将功耗降至低点。例如,在产生时钟输出时,可以关断DAC。该器件采用20引脚TSSOP封装。那么AD9834低功耗DDS器件都具备哪些特征?• 窄带SFDR 72 dB• 电源电压范围:2.3 V至5.5 V 电源供电• 输出频率最高达37.5 MHz• 正弦波输出/三角波输出• 片上集成比较器• 式SPI接口• 扩展温度范围:−40°C至+105°C• 掉电选项• 功耗:20 mW(3 V时)• 20引脚TSSOP
  • 点击次数: 0
    2026-02-05
    一、定义AD7192是一款适合高精密测量应用的低噪声完整模拟前端。它集成一个低噪声、24位Σ-Δ型模数转换器(ADC)。片内低噪声增益级意味着可直接输入小信号。这款器件可配置为两路差分输入或四路伪差分输入。片内通道序列器可以使能多个通道,AD7192按顺序在各使能通道上执行转换,这可以简化与器件的通信。片内4.92 MHz时钟可以用作ADC的时钟源;或者,也可以使用外部时钟或晶振。该器件的输出数据速率可在4.7 Hz至4.8 kHz的范围内变化。这款器件提供两种数字滤波器选项。滤波器的选择会影响以编程输出数据速率工作时的均方根噪声和无噪声分辨率、建立时间以及50 Hz/60 Hz抑制。针对要求所有转换均需建立的应用,AD7192具有零延迟特性。这款器件的工作电源电压为3 V至5.25 V,功耗为4.35 mA,采用24引脚TSSOP封装。二、特征• 均方根噪声:11 nV (4.7 Hz, G = 128)• 15.5位无噪声分辨率(2.4 kHz, G = 128)• 无噪声分辨率高达22位(G = 1)• 失调漂移:5 nV/°C• 增益漂移:1 ppm/°C• 稳定的时间漂移特性• 2个差分/4个伪差分输入通道• 自动通道序列器• 可编程增益(1至128)三、应用应变计传感器压力测量温度测量色谱法PLC/DCS模拟输入模块数据采集医疗和科学仪器
  • 点击次数: 0
    2026-02-05
    一、定义AD5160是一款适合256位调整应用的2.9 mm x 3 mm紧凑型封装解决方案,可实现与机械电位器或可变电阻器相同的电子调整功能,而且具有增强的分辨率、固态可靠性和出色的低温度系数性能。游标设置可通过SPI兼容型数字接口控制。游标与固定电阻任一端点之间的电阻值,随传输至RDAC锁存器中的数字码呈线性变化。该器件采用2.7 V至5.5 V电源供电,功耗小于5 µA,适合电池供电的便携式应用。二、特征端到端电阻:5kΩ、10kΩ、50kΩ、100kΩ紧凑型SOT-23-8(2.9毫米×3毫米)封装SPI兼容接口开机预设为中等规模单电源:2.7 V至5.5 V低温系数:45 ppm/°C低功耗,IDD=8μA宽工作温度:-40°C至+125°C三、应用新设计中的机械电位计更换压力、温度、位置、化学和光学传感器的传感器调节射频放大器偏置增益控制和偏移调整
  • 点击次数: 0
    2026-02-05
    布局对所有开关稳压器都很重要,但对于高开关频率的稳压器尤为重要。为了实现高效率、良好的调节性能、良好的稳定性和低噪声,需要精心设计的 PCB 布局。设计 PCB 时请遵循以下准则:输入旁路电容将输入旁路电容 CIN 尽可能靠近 PVIN1 引脚、PVIN2 引脚和 PVINSYS 引脚将每个引脚单独布线至该电容的焊盘,以最小化功率输入之间的噪声耦合,而不是在器件处将三个引脚连接在一起可在 PVINSYS 引脚上使用单独的电容以获得最佳噪声性能高电流路径使高电流路径尽可能短。这些路径包括:CIN1、L1、L2、D1、D2、COUT1、COUT2 和 PGND 之间的连接它们与 ADP5071 的连接接地处理在电路板顶层将 AGND 和 PGND 分开。这种分离可避免 AGND 被开关噪声污染不要将 PGND 连接到顶层布局上的 EPAD通过过孔将 AGND 和 PGND 都连接到电路板地平面理想情况下,将 PGND 连接到电路板上输入和输出电容之间的某一点将其 EPAD 通过过孔单独连接到该接地层,并尽可能靠近 CVREF 和 CVREG 电容之间的位置连接 AGND其他关键准则使高电流走线尽可能短而宽,以最小化寄生电感(会导致尖峰和电磁干扰 EMI)避免在任何连接到 SW1 和 SW2 引脚的节点附近或电感 L1 和 L2 附近布置高阻抗走线,以防止辐射开关噪声注入将反馈电阻尽可能靠近 FB1 和 FB2 引脚放置,以防止高频开关噪声注入将上部反馈电阻 RFT1 和 RFT2 的顶端,或从 COUT1 和 COUT2 顶端到它们的走线尽可能靠近布置,以实现最佳输出电压检测将补偿元件尽可能靠近 COMP1 和 COMP2 放置。不要与反馈电阻共享到过孔地平面的过孔,以避免将高频噪声耦合到敏感的 COMP1 和 COMP2 引脚将 CVREF 和 CVREG 电容尽可能靠近 V...
热门分类
关于我们

───  公众号二维码  ───

兆亿微波商城微信公众号

兆亿微波商城www.rfz1.com是一个家一站式电子元器件采购平台,致力于为广大客户提供高质量、高性能的电子元器件产品。产品覆盖功放器件、射频开关、滤波器、混频器、功分器、耦合器、衰减器、电源芯片、电路板及射频电缆等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为客户提供一站式供应链采购服务。 

  • 品质 • 正品行货 购物无忧
  • 低价 • 普惠实价 帮您省钱
  • 速达 • 专业配送 按时按需
Copyright ©2020 - 2021 兆亿微波科技有限公司
X
1

QQ设置

    1
3

SKYPE 设置

4

阿里旺旺设置

5

电话号码管理

电话 电话 电话
010-62975458
    1
6

二维码管理

    1
返回顶部
展开