嗨,欢迎来到兆亿微波官方商城!
服务热线: 010-62975458  17600099251
购物车图片 购物车 ( )
全部商品分类

毫米波与太赫兹领域未来的发展方向

2022/1/5 9:02:44
浏览次数: 5

毫米波及太赫兹领域是一个发展迅速的交叉学科,有着极其重要的科研学术价值和工业应用前景. 在毫米波及太赫兹技术方面的研究,经过近几十年的发展,取得了很多重要的成果, 但是仍然在很多研究领域还不够成熟, 亟待需要进一步地深入开发, 并且有效的将这些频段的应用丰富起来, 进而最终推动国民经济的发展。


毫米波与太赫兹领域未来的发展方向

毫米波领域


1、大功率毫米波固态源。针对5G 通信、空天地一体化通信、高分辨率雷达等应用需求, 发展GaAs和GaN 工艺, 提升毫米波固态放大器的输出功率, 探索高效率功率合成原理和实现方法.


2、高功率毫米波电真空器件。毫米波行波管(TWT)、回旋管(Gyrotron)、速调管(Klystron)、返波管(BWO) 等高功率放大器的设计与实现, 重点是提高其可靠性和寿命.


3、 毫米波III/V 族单片集成电路。 研究GaAs、InP 等III/V 族毫米波单片集成电路, 改善输出功率和噪声性能指标, 提高电路集成度, 以满足我国毫米波技术的应用需求.


4、毫米波硅基集成电路。硅基(如CMOS、SiGe 等) 毫米波集成电路在功率和噪声等性能上比III/V族单片集成电路要差一些, 但高集成度、低成本等特性将使得CMOS 或SiGe 集成电路在未来毫米波应用领域发挥越来越重要的作用. 针对5G 无线通信、阵列成像和汽车防撞雷达等应用, 研究高集成度、多通道毫米波硅基系统芯片的架构和实现方法.


5、毫米波测量仪器研制。目前,我国毫米波测试仪器领域基本上被Keysight 和R&S 等国外公司垄断, 而测试仪表又是发展各种电路与系统的基础。因此, 要加强毫米波测量仪器特别是高端毫米波测量仪器的研究与开发.


6、 毫米波应用系统。探索毫米波应用系统的新原理、新架构、新的实现方法, 及其在雷达、制导、通信、成像和汽车自动驾驶等领域的创新应用.


太赫兹领域


1、大功率太赫兹源。 高功率源对于太赫兹远距离成像、探测物质内部的高穿透波谱研究、太赫兹通信等至关重要. 但到目前为止, 低成本、小体积的高功率太赫兹源还没有很好的解决方案, 需要持续研究, 以期获得突破性进展. 此外, 还应发展太赫兹行波管、回旋管、速调管和返波管等高功率放大器.


2、太赫兹信号检测。在太赫兹信号检测方面, 近些年得到了长足的进步, 许多技术的性能指标已经接近于其理论的极限, 但仍然很难满足日益增长的需求. 因此, 迫切需要探索新的检测原理, 发现新的器件, 并且在此基础上推进大规模太赫兹检测阵列的研究.


3、太赫兹固态器件与集成电路。 发展III/V 族半导体工艺, 开展元器件模型和电路设计方法的研究, 实现太赫兹器件与单片集成电路; 发展硅基集成电路工艺, 开展相应元器件模型和电路设计方法的研究, 实现太赫兹器件与片上系统.


4、太赫兹新材料与无源元件。发展新的高精度加工工艺和新型太赫兹材料, 探索新的太赫兹无源元件工作机理, 研究新型低成本、低损耗、高集成度的太赫兹无源元件。 超高速太赫兹通信. 对于未来数据传输速率需要100 Gbps 甚至更高的场合, 研究超高速太赫兹通信技术, 包括频谱规划、信道模型、系统架构与标准等。


5、太赫兹测量技术与仪器。 伴随着太赫兹波生成和检测技术的成熟, 我国太赫兹仪器的研制也将拉开序幕. 太赫兹网络分析仪, 太赫兹光谱仪等等对我国太赫兹领域的研制能力有着重要的支撑作用.


6、太赫兹交叉应用领域。 目前太赫兹技术的主要研究领域在太赫兹成像, 主要集中在生物成像应用. 太赫兹波可用于对一些与其波长可比的细胞、DNA 等的检测. 研究太赫兹波与各种物质之间的相互作用, 以期发现新的物理特性、化学变化等, 对生物医学的基础领域研究提供思路. 开发新的太赫兹技术应用领域对太赫兹技术的整体发展有着重要的推动作用.


此外, 将已有的毫米波、太赫兹系统应用推向产业化, 设计出易加工、低成本、高性能的商用化太赫兹系统将对国家基础工业的发展带来革命性的变化。


在线留言询价
推荐阅读
  • 点击次数: 1
    2025-12-05
    Qorvo的TGA2594-HM是基于Qorvo 0.15um GaN-on-SiC工艺制造的封装功率放大器。TGA2594-HM的工作频率为27至31 GHz,饱和输出功率为36.5 dBm,功率附加效率为25%,小信号增益为25 dB。TGA2594-HM采用密封的22引线7x7 mm陶瓷QFN,设计用于印刷电路板的表面安装。该封装采用铜基,提供卓越的热管理。TGA2594-HM非常适合支持商业和军事应用。两个射频端口都集成了隔直电容,完全匹配50欧姆。无铅,符合RoHS标准。特征•频率范围:27-31GHz•磅:PIN=14 dBm时为36.5 dBm•PAE:25%连续波•小信号增益:25 dB•IM3:-35 dBc@25 dBm磅/音•偏压:VD=20 V,IDQ=140 mA,VG=-3 V(典型值)•包装尺寸:7 x 7 x 1.3毫米应用•军用卫星通信终端•商用卫星通信终端•点对点数字广播•点对多点数字广播引脚配置图如有型号采购及选型需求,可直接联系兆亿微波电子元件商城。
  • 点击次数: 1
    2025-12-05
    AD9963是引脚兼容的12位低功耗MxFE®转换器,提供两个采样速率为100 MSPS的ADC通道和两个采样速率为170 MSPS的DAC通道。这些转换器针对要求低功耗和低成本的通信系统的发射和接收信号路径进行了优化。数字接口提供灵活的时钟选项。发射路径可配置为1×、2×、4×和8×插值。接收路径具有一个可旁路的2×抽取低通滤波器。引脚配置图特征• 双通道10位/12位、100 MSPS ADCSNR = 67 dB, fIN = 30.1 MHz• 双通道10位/12位、170 MSPS DACACLR = 74 dBc• 5 个辅助模拟输入/输出通道• 低功耗:• 支持全双工和半双工数据接口• 72引脚、无铅小型LFCSP封装应用无线基础设施微微蜂窝基站医疗器械超声AFE便携式仪表信号发生器、信号分析仪如有型号采购及选型需求,可直接联系兆亿微波电子元件商城。
  • 点击次数: 0
    2025-12-05
    FRAC/INT 寄存器(RO)映射当 DB[2:0] 设为 000 时,访问片内 FRAC/INT 寄存器(寄存器 RO,见图 25)。RamponDB31 = 1 启用斜坡功能;DB31 = 0 关闭斜坡功能。MUXout Control片内多路复用器由 DB[30:27] 控制,真值表见图 25。12 位整数值(INT)DB[26:15] 设置 INT 值,该值是反馈分频系数的一部分。12 位 MSB 小数值(FRAC)DB[14:3] 与 LSB FRAC 寄存器(R1)中的 DB[27:15] 共同组成 25 位 FRAC 值,送入小数插值器。DB[14:3] 为 FRAC 的高 12 位(MSB),R1 中的 DB[27:15] 为低 13 位(LSB)。LSB FRAC 寄存器(R1)映射当 DB[2:0] 设为 001 时,访问片内 LSB FRAC 寄存器(寄存器 R1,见图 26)。保留位所有保留位必须写 0,以保证正常工作。相位调整使能DB28 = 1 启用相位调整;DB28 = 0 关闭。13 位 LSB 小数值(FRAC)DB[27:15] 与 RO 寄存器中的 DB[14:3] 共同组成 25 位 FRAC 值。DB[27:15] 为 FRAC 的低 13 位(LSB),RO 中的 DB[14:3] 为高 12 位(MSB)。12 位相位值DB[14:3] 定义相位字,用于在 RF 输出端引入相对相移。写寄存器 RO 后生效。相移量 = (相位值 × 360°) / 2¹²示例:相位值 = 512 时,相移 = 45°。如有型号采购及选型需求,可直接联系兆亿微波电子元件商城。
  • 点击次数: 0
    2025-12-05
    HMC600LP4(E)对数探测器/控制器其将输入端的RF信号转换为输出端的成比例的DC电压。HMC600LP4(E)采用连续压缩拓扑结构,在宽输入频率范围内提供极高的动态范围和转换精度。随着输入功率的增加,连续放大器逐一进入饱和状态,从而精确地近似对数函数。一系列平方律检测器的输出被求和,转换为电压域并缓冲以驱动LOGOUT输出。对于检测模式,LOGOUT引脚与VSET输入端短路,将提供19mV/dB的标称对数斜率和-95 dBm的截距。HMC600LP4(E)也可用于控制器模式,在该模式下,外部电压被施加到VSET引脚,以创建AGC或APC反馈回路。特征宽动态范围:高达75 dB灵活的电源电压:+2.7V至+5.5V掉电模式温度稳定性极佳紧凑型4x4mm无引线SMT封装应用HMC600LP4/HMC600LP4E是以下中频和射频应用的理想选择:•蜂窝/PCS/3G•WiMAX、WiBro和固定无线•电源监控电路•接收机信号强度指示(RSSI)•自动增益和功率控制如有型号采购及选型需求,可直接联系兆亿微波电子元件商城。
  • 点击次数: 2
    2025-12-05
    AD8001电流反馈型放大器布局需要注意以下问题:要想让 AD8001 达到规格书所标榜的高速性能,必须仔细设计印制板布局并慎重选型。必须采用低寄生参数元件,并遵循射频/高速电路设计规范。接地层:PCB 元件面的所有空余区域应铺整块接地层,以提供低阻抗回路。输入引脚附近要将接地层挖空,减小杂散电容。电源去耦:一律使用贴片瓷片电容(见图 13)。电容一端接接地层,另一端距每个电源引脚不超过 1/8 英寸(≈3 mm)。大容量储能:再并联一只 4.7 µF–10 µF 的钽电解,用来在输出快速、大信号跳变时提供瞬态电流,距离可稍远。反馈电阻:尽量靠近反相输入引脚,使该节点杂散电容降到最小。反相端电容变化 长线传输:若信号走线长度 1 英寸(≈25 mm),应采用微带线或带状线设计,特征阻抗取 50 Ω 或 75 Ω,并在两端做好终端匹配。如有型号采购及选型需求,可直接联系兆亿微波电子元器件商城。
热门分类
关于我们

───  公众号二维码  ───

兆亿微波商城微信公众号

兆亿微波商城www.rfz1.com是一个家一站式电子元器件采购平台,致力于为广大客户提供高质量、高性能的电子元器件产品。产品覆盖功放器件、射频开关、滤波器、混频器、功分器、耦合器、衰减器、电源芯片、电路板及射频电缆等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为客户提供一站式供应链采购服务。 

  • 品质 • 正品行货 购物无忧
  • 低价 • 普惠实价 帮您省钱
  • 速达 • 专业配送 按时按需
Copyright ©2020 - 2021 兆亿微波科技有限公司
X
1

QQ设置

    1
3

SKYPE 设置

4

阿里旺旺设置

5

电话号码管理

电话 电话 电话
010-62975458
    1
6

二维码管理

    1
返回顶部
展开