嗨,欢迎来到兆亿微波官方商城!
服务热线: 010-62975458  17600099251
购物车图片 购物车 ( )
全部商品分类

关于天线的科普,看完这篇就够了

2020/12/10 11:21:52
浏览次数: 16

  说起天线,首先要了解一下天线的来历,1948年5月7日“无线电之父”波波夫在这一天设计了世界上第一台无线电接收机,为无线电的运用奠定了基础,天线也就此产生。


  关于天线的科普,看完这篇就够了


  言归正传,下面就带大家了解一下天线究竟是什么样的?天线的作用是啥?原理是啥?都有哪些性能参数?下面将一一道来。


  关于天线的科普,看完这篇就够了


  天馈线结构


  天线的作用


  天线是发射机发射无线电波和接收机接收无线电波的装置,发射天线将传输线中的高频电磁能转换为自由空间的电磁波,接收天线将自由空间的电磁波转换为高频电磁能。因此,天线是换能装置,具有互易性。天线性能将直接影响无线网络的性能。通俗的讲天线就是一个转换装置,把传输传播的导行波,变换成在自由空间中传播的电磁波,或进行相反的变换。


  关于天线的科普,看完这篇就够了


  下面来了解一下导行波,导行波是全部或绝大部分电磁能量被约束在有限横截面内沿确定方向传输的电磁波。通俗的来讲导行波就是一种电线上的电磁波。天线是怎么实现导行波和电磁波之间转换的呢?下面就来说一下天线的工作原理。


  天线的工作原理


  当导线载有交变电流时,就可以形成电磁波的辐射;


  如果两导线的距离很近,导线中电流方向相反,感应电动势互相抵消,因此辐射很微弱;


  关于天线的科普,看完这篇就够了


  如果将两导线张开,由于两导线的电流方向相同,辐射较强;


  当导线的长度可与波长相比拟时,导线上的电流就大大增加,因而就能形成较强的辐射;


  关于天线的科普,看完这篇就够了


  通常将上述能产生显著辐射的直导线称为振子;


  两臂长度均为1/4波长的振子叫做对称半波振子;


  关于天线的科普,看完这篇就够了


  有了电场,就有了磁场,有了磁场,就有了电场,无限循环,就有了电磁场和电磁波。


  产生电场的这两根直导线,就叫做振子。


  通常两臂长度相同,所以叫对称振子。


  长度像下面这样的,叫半波对称振子。目前对称振子是市面上最常用的天线。


  关于天线的科普,看完这篇就够了


  半波对称振子


  内部组成:槽板、馈电网络、振子


  外部组成:天线罩、端盖、接头


  电磁波的极化


  极化是描述电磁波场强矢量空间指向的一个辐射特性,当没有特别说明时,通常以电场矢量的空间指向作为电磁波的极化方向,而且是指在该天线的最大辐射方向上的电场矢量来说的。电场矢量在空间的取向在任何时间都保持不变的电磁波叫直线极化波,有时以地面作参考,将电场矢量方向与地面平行的波叫水平极化波,与地面垂直的波叫垂直极化波。


  关于天线的科普,看完这篇就够了


  但是在实际当中电场矢量在空间的取向有的时候并不固定,电场失量端点描绘的轨迹是圆,称圆极化波;若轨迹是椭圆,称之为椭圆极化波,椭圆极化波和圆极化波都有旋相性。不同频段的电磁波适合采用不同的极化方式进行传播,移动通信系统通常采用垂直极化,而广播系统通常采用水平极化,椭圆极化通常用于卫星通信。


  另外天线辐射的电磁场的电场方向就是天线的极化方向。垂直极化波要用具有垂直极化特性的天线来接收;水平极化波要用具有水平极化特性的天线来接收;当来波的极化方向与接收天线的极化方向不一致时,在接收过程中通常都要产生极化损失。如下图所示:


  关于天线的科普,看完这篇就够了


  目前常见的极化方式有单极化天线、双极化天线两种,其本质都是线极化方式。双极化天线利用极化分集来减少移动通信系统中多径衰落的影响,提高基站接收信号质量的,有0°/90°、45°/-45°两种极化天线。其中45°/-45°双极化天线是比较常用的。双极化天线是两个天线为一个整体,分别传输两个独立的波,两付天线的振子相互呈垂直排列。双极化天线减少了天线的数目,施工和维护更加简单。如下图所示:


  关于天线的科普,看完这篇就够了

  关于天线的科普,看完这篇就够了

  另外单极化天线多采用垂直线极化;双极化天线多采用±45°双线极化。目前运营商主要采用双极化天线,可以在小区覆盖时减少天线的数量,降低天线架设的条件要求,进而减少投资,还能保证覆盖效果。


  天线的性能参数


  天线的性能参数主要包括电性能参数和机械参数。下面重点说一下天线方向图、增益、前后比、波束宽度、增益系数、零点填充和上副瓣抑制、驻波比、下倾角等。


  为什么定向天线可以控制信号的辐射方向呢?首先了解一下天线方向图。


 关于天线的科普,看完这篇就够了

  天线辐射的电磁场在固定距离上随角坐标分布的图形,称为方向图。用辐射场强表示的称为场强方向图,用功率密度表示的称之功率方向图,用相位表示的称为相位方向图。


  天线方向图是空间立体图形,但是通常用两个互相垂直的主平面內的方向图来表示,称为平面方向图,一般叫作垂直方向图和水平方向图。就水平方向图而言,有全向天线与定向天线之分,而定向天线的水平方向图的形状也有很多种,如心型、8字形等。


  天线具有方向性本质上是通过阵子的排列以及各阵子馈电相位的变化来获得的,在原理上与光的干涉效应十分相似。因此会在某些方向上能量得到增强,而某些方向上能量被减弱,即形成一个个波瓣(或波束)和零点。能量最强的波瓣叫主瓣,上下次强的波瓣叫第一旁瓣,依次类推。对于定向天线,还存在后瓣。


  说了这么多,通俗一点讲的天线方向图,对称半波方向图,有点像个平放的游泳圈。


  天线的诸多特性中,一个很重要的能力,就是辐射距离。如何让天线覆盖的更远呢,那就是进行天线压缩,也就是增加振子。说到这里需要说一下全向天线和定向天线。


  全向天线是360度辐射的,主要用于农村郊区,但是在城区需要控制天线的覆盖距离,需要对指定区域进行有效覆盖,那么就需要定向天线来解决了。定向天线就是在全向天线的基础上加上一个反射板,档在一侧进行聚焦,从而形成了主瓣,旁瓣,后瓣。如下图所示:


 关于天线的科普,看完这篇就够了


  天线方向图先简单说道这里,想必大家都了解了吧,下面说一下天线的其他性能参数。


  天线增益


  天线作为一种无源器件,其增益的概念与一般功率放大器增益的概念不同。功率


  放大器具有能量放大作用,但天线本身并没有把增加所辐射信号的能量,它只是


  通过天线阵子的组合并改变其馈电方式把能量集中到某一方向。增益是天线的重


  要指标之一,它表示天线在某一方向能量集中的能力。


  指在输入功率相等的条件下,实际天线与理想的辐射单元或半波振子在空间同一点处所产生的场强的平方之比,即功率之比。


  一般与天线方向图有关,方向图主瓣越窄,后瓣、旁瓣越小,增益越高。


  单位:dBi或


  是以理想点源天线增益为参考基准——Isotropic。


  是以半波振子天线增益为参考基准——Dipole。


  = dBd+


  关于天线的科普,看完这篇就够了

  前后比


  前后比:前后抑制比是指天线在主瓣方向与后瓣方向信号辐射强度之比,天线的后向180°±30°以内的副瓣电平与最大波束之差,用正值表示。一般天线的前后比在18~45dB之间。对于密集市区要积极采用前后比抑制大的天线。


  关于天线的科普,看完这篇就够了


  波束宽度


  水平波瓣3dB宽度:基站天线水平半功率角有360°、210°、120°、90°、65°、60°、45°、 33°等,城市中最常用的是65°。


  关于天线的科普,看完这篇就够了


  水平垂直方向增益系数


  一般在方向图主瓣3dB范围内增益最大,其他范围增益将减少,用方向系数来表示,包括水平增益系数和垂直增益系数,单位为


  可以看到,在水平3dB范围,水平方向的增益系数变化不大,不超过3dB,而一旦超过水平3dB的边缘线(与主方向水平夹角在32~33度左右),水平增益系数就急剧下降。


  特别在50~60度的区域,对于目前较普遍的3小区基站,该区域处于的两个小区交界处,水平增益系数最小,因此,该区域容易成为弱信号区。


  在实际工程中,如果基站四周的话务以及建筑物分布不均衡,可以适当调整个别小区的天线水平方位角,使得主话务区得到有效覆盖。其它区域看起来虽然水平增益系数更低了,但或者由于建筑物相对稀疏而使得传播损耗减少,结果信号可能并不弱;或者是由于话务稀疏,可以不必在意。调整小区的天线方位角,同时需要注意干扰源和可能产生的干扰,避免解决了覆盖的问题,带来了干扰的问题,这两个方面需要综合考虑。


 关于天线的科普,看完这篇就够了

  零点填充和上副瓣抑制


  零点填充


  零点填充,基站天线垂直面内采用赋形波束设计时,为了使业务区内的辐射电平更均匀,下副瓣第一零点需要填充,不能有明显的零深。高增益天线由于其垂直半功率角较窄,尤其需要采用零点填充技术来有效改善近处覆盖。 通常零深相对于主波束大于-26dB即表示天线有零点填充,有的供应商采用百分比来表示,如某天线零点填充为10%,这两种表示方法的关系为: Y dB=


  如:零点填充10%,即X=10; 用dB表示:Y=20log(10%/100%)=-


  上副瓣抑制


  上副瓣抑制,对于小区制蜂窝系统,为了提高频率复用效率, 减少对邻区的同频干扰,基站天线波束赋形时应尽可能降低那些瞄准干扰区的副瓣,提高 D/U值,上第一副瓣电平应小于-18dB,对于大区制基站天线无这一要求。


  关于天线的科普,看完这篇就够了


  工作带宽


  驻波比


  假设基站发射功率是10W,反射回0.5W,由此可算出


  反射系数: Γ=开平方(0.5/10)=


  驻波比:VSWR=(1+Γ)/(1- Γ)=


  回波损耗: RL=10lg(10/0.5)=13dB,


  回波损耗与反射系数的关系:RL=-20lg Γ


  一般要求天线的驻波比小于1.5,驻波比是越小越好,但工程上没有必要追


  求过小的驻波比。


  关于天线的科普,看完这篇就够了

  天线驻波比


  回波损耗(RL)


  (入射功率/反射功率),以分贝表示


  的值在0dB到无穷大之间,回波损耗越小表示匹配越差,反之则匹配越好。0dB表示全反射,无穷大表示完全匹配。


  在移动通信中,一般要求回波损耗大于14dB(对应VSWR=1.5)


  例如Pf=10W,Pr=0.5W,则RL=10lg(10/0.5)=


  与RL值有一个转换关系


  下倾角


  天线下倾是常用的一种增强主服务区信号电平,减小对其他小区干扰的一种重要手段。


  通常天线的下倾方式有机械下倾、电子下倾两种方式。机械下倾是通过调节天线支架


  将天线压低到相应位置来设置下倾角;而电子下倾是通过改变天线振子的相位来控制


  下倾角。当然在采用电子下倾角的同时可以结合机械下倾一起进行。


  关于天线的科普,看完这篇就够了


  下倾角


  天线类型


  按工作频带分有800MHZ、900MHZ、1800MHZ、1900MHZ;


  按极化方式分有垂直极化天线、水平极化天线、+450线极化天线、圆极化天线;


  按方向图分有全向天线、定向天线;


  按下倾方式分有机械下倾、电调下倾;


  按功能分有发射天线、接收天线、收发共用天线。


  天线的发展趋势是向多频段、多功能、智能化方向发展。


  关于天线的科普,看完这篇就够了

  天线类型


  写到这里想必大家对天线的了解大概也差不多了,实际上,天线的知识还有很多,本文只是把常用的知识点给大家分享一下,远比大家想象得复杂。而且,目前天线也处于高速发展的阶段,还有很大的潜力可以挖掘。尤其是现在正在如火如荼建设的5G网络,天线技术革新是重中之重,各大设备厂家一定会在5G天线上全力以赴,让我们拭目以待吧!


在线留言询价
推荐阅读
  • 点击次数: 1
    2025-12-17
    ZVS 隔离型转换器模块系列为高密度隔离式 DC-DC 转换器,采用零电压开关(ZVS)拓扑结构。28V 输入系列支持 16V 至 50V 的宽输入电压范围,提供 50W 输出功率,功率密度高达 334W/in³。这些转换器模块支持表面贴装,尺寸仅为 0.5 英寸见方,相比传统方案可节省约 50% 的 PCB 面积。模块开关频率高达 900kHz,允许使用更小的输入和输出滤波元件,从而进一步减小系统整体尺寸和成本。输出电压通过高性能隔离磁反馈方案采样并反馈至内部控制器,具备高带宽和良好的共模噪声抑制能力。PI31xx-00-HVMZ 系列无需外部反馈补偿,仅需极少外部元件即可构成完整解决方案。功能丰富,包括输出电压微调、输出过压保护、可调软启动、自动重启型过流保护、输入欠压/过压锁定,以及温度监控与保护功能(提供与芯片温度成比例的模拟电压,并支持关断与报警)。特性与优势效率高达 88%高开关频率降低输入滤波需求,减少输出电容专有“双钳位”ZVS 升降压拓扑专有隔离磁反馈技术小封装尺寸(0.57 in²),节省 PCB 面积超低厚度(0.265 英寸)宽输入电压范围:16–50V支持开关控制(正逻辑)宽范围输出电压微调:+10% / –20%(多数型号)温度监控(TM)与过温保护(OTP)输入欠压锁定(UVLO)、过压锁定(OVLO)与输出过压保护(OVP)自动重启型过流保护可调软启动输入/输出之间隔离电压达 2250V
  • 点击次数: 1
    2025-12-17
    使用 S 控制寄存器组进行 S 引脚脉冲控制LTC6811 的 S 引脚可用作简单的串行接口,特别适用于控制 Linear Technology 的 LT8584——一款专为大型电池组主动均衡设计的单片反激式 DC/DC 转换器。LT8584 具有多种工作模式,这些模式通过串行接口进行控制。LTC6811 可通过在每个 S 引脚上发送特定脉冲序列,与 LT8584 通信并选择其工作模式。S 控制寄存器组用于设定 12 个 S 引脚的行为,每个 4 位(nibble)定义一个 S 引脚应输出高电平、低电平,或发送 1 至 7 个脉冲的序列。表 24 列出了可发送至 LT8584 的 S 引脚行为选项。S 引脚脉冲以 6.44kHz 的频率输出(周期为 155μs),脉冲宽度为 77.6μs。脉冲序列在发送 STSCTRL 命令后启动,前提是命令的 PEC(包错误校验)正确匹配。主机可继续提供 SCK 时钟,以轮询脉冲执行状态。该轮询机制与 ADC 轮询功能类似:在脉冲序列完成前,数据输出将保持逻辑低电平。在 S 引脚脉冲执行期间,新的 STSCTRL 或 WRSCTRL 命令将被忽略。可使用 PLADC 命令来判断 S 引脚脉冲是否已完成。若 WRSCTRL 命令及其 PEC 正确接收,但数据 PEC 不匹配,则 S 控制寄存器组将被清零。如果配置寄存器组中的某个 DCC 位被置位,LTC6811 将强制将对应的 S 引脚拉低,无论 S 控制寄存器组的设置如何。因此,在使用 S 控制寄存器组时,主机应将 DCC 位保持为 0。CLRSCTRL 命令可用于快速将 S 控制寄存器组清零(全部置为 0),并强制脉冲控制逻辑释放对 S 引脚的控制。该命令在汽车应用中可用于缩短诊断控制循环时间。
  • 点击次数: 2
    2025-12-17
    C2000™ 32 位微控制器针对处理、感应和驱动进行了优化,可提高实时控制应用(如工业电机驱动器、光伏逆变器和数字电源、电动汽车和运输、电机控制以及感应和信号处理)的闭环性能。C2000 系列包括高级性能 MCU 和入门级性能 MCU。F2803x 系列微控制器将 C28x 内核和控制律加速器 (CLA) 的性能与高度集成的控制外设整合到低引脚数的器件中。该系列器件的代码与基于 C28x 的旧版代码兼容,同时具有较高的模拟集成度。一个内部稳压器实现了单电源轨运行。HRPWM 模块经过强化,可实现双边沿控制(调频)。增设了具有 10 位内部基准的模拟比较器,可直接进行路由以控制 PWM 输出。ADC 可在 0V 至 3.3V 的固定满量程范围内实施转换,支持 VREFHI/VREFLO 基准的比例运算。ADC 接口已针对低开销和延迟进行了优化。应用• 空调室外机• 电梯门自动启闭装置驱动控制• 直流/直流转换器• 逆变器和电机控制• 车载充电器 (OBC) 和无线充电器• 自动分拣设备• 纺织机• 焊接机• 交流充电(桩)站• 直流充电(桩)站• 电动汽车充电站电源模块• 车辆无线充电模块• 能量存储电源转换系统 (PCS)• 微型逆变器• 太阳能电源优化器• 串式逆变器• 交流驱动器控制模块• 线性电机分段控制器• 伺服驱动器功率级模块• 交流输入 BLDC 电机驱动器• 直流输入 BLDC 电机驱动器• 工业交流-直流• 三相 UPS• 商用网络和服务器 PSU• 商用通信电源整流器
  • 点击次数: 1
    2025-12-17
    安全注意事项LTM4643 模块未提供从输入(Vin)到输出(Vout)的电气隔离(即无 galvanic isolation)。模块内部未集成保险丝。如有必要,应在外部为每个模块配置一个慢断型保险丝,其额定电流应为最大输入电流的两倍,以防止模块在发生灾难性故障时受损。该器件支持热关断和过流保护功能。布局检查清单 / 示例尽管 LTM4643 具备高度集成性,使 PCB 布局变得简单,但为优化其电气性能与热性能,仍需注意以下布局建议:在 PCB 上使用大面积铜箔覆盖高电流路径,包括 ViN1 至 ViN4、GND、VouT1 至 VouT4。这有助于降低 PCB 导通损耗并减少热应力。将高频陶瓷输入与输出电容尽可能靠近 ViN、GND 和 VouT 引脚放置,以最小化高频噪声。在模块下方设置专用的电源接地层(power ground layer)。为降低过孔的导通损耗并减少模块热应力,应使用多个过孔连接顶层与其他电源层。请勿在焊盘上直接放置过孔,除非这些过孔已被填充(capped)或覆盖电镀(plated over)。为连接到信号引脚的元件设置独立的信号地(SGND)铜区,并在模块下方将 SGND 与 GND 连接。若多个模块并联使用,应将 Vout、VFB 和 COMP 引脚连接在一起。建议使用内层将这些引脚紧密连接。TRACK/SS 引脚可连接至一个公共电容,用于实现稳压器的软启动。在信号引脚处引出测试点,便于监测。下图是推荐的一种布局式示例,仅供参考。
  • 点击次数: 1
    2025-12-17
    LTM4643 是一款四路输出的独立非隔离型开关模式 DC/DC 电源模块,封装尺寸为 9mm × 15mm × 1.82mm,超轻薄设计。该模块具备四个独立的稳压通道,每个通道在仅需少量外部输入输出电容的情况下,可持续输出高达 3A 的电流。每个稳压器可在 4V 至 20V 的输入电压范围内,通过单个外部电阻将输出电压精确设定在 0.6V 至 3.3V 之间。若使用外部偏置电压,该模块最低可在 2.375V 的输入电压下工作。LTM4643 集成了四个独立的恒定频率控制、导通时间谷值电流模式稳压器、功率 MOSFET、电感器及其他支持性分立元件。典型开关频率设定为 1.2MHz。对于对开关噪声敏感的应用,该 μModule 稳压器可通过外部时钟信号在 850kHz 至 1.5MHz 范围内实现同步。采用电流模式控制与内部反馈环路补偿,使 LTM4643 模块在宽范围的输出电容条件下(即使全部使用陶瓷电容)仍具备良好的稳定性裕度与瞬态响应性能。电流模式控制还提供了将任意独立稳压通道并联的灵活性,并可实现精确的电流共享。通过内置的通道间时钟交错功能,LTM4643 可轻松配置为 2+2、3+1 或四通道并联运行,为多轨 POL(负载点)应用提供更高的设计灵活性。此外,LTM4643 提供 CLKIN 与 CLKOUT 引脚,用于频率同步或多相并联多个器件,最多支持 8 相级联同步运行。电流模式控制还支持逐周期的快速电流监测。在过流条件下,模块提供折返式限流保护,当 VeB 电压下降时,将电感谷值电流限制为原始值的约 40%。内部过压与欠压比较器将在输出反馈电压偏离稳压点 ±10% 范围时,将开漏输出的 PGOOD 引脚拉低。在过压(OV)与欠压(UV)条件下,模块强制进入连续导通模式(CCM),但在启动阶段,当 TRACK 引脚电压上升至 0.6...
热门分类
关于我们

───  公众号二维码  ───

兆亿微波商城微信公众号

兆亿微波商城www.rfz1.com是一个家一站式电子元器件采购平台,致力于为广大客户提供高质量、高性能的电子元器件产品。产品覆盖功放器件、射频开关、滤波器、混频器、功分器、耦合器、衰减器、电源芯片、电路板及射频电缆等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为客户提供一站式供应链采购服务。 

  • 品质 • 正品行货 购物无忧
  • 低价 • 普惠实价 帮您省钱
  • 速达 • 专业配送 按时按需
Copyright ©2020 - 2021 兆亿微波科技有限公司
X
1

QQ设置

    1
3

SKYPE 设置

4

阿里旺旺设置

5

电话号码管理

电话 电话 电话
010-62975458
    1
6

二维码管理

    1
返回顶部
展开