嗨,欢迎来到兆亿微波官方商城!
服务热线: 010-62975458  17600099251
购物车图片 购物车 ( )
全部商品分类

预计2025年国内功率放大器市场规模将达到40亿元左右

2021/1/4 9:56:42
浏览次数: 6

  【兆亿微波商城】:功率放大器作为射频前端发射通路的主要器件,主要是为了将调制振荡电路所产生的小功率的射频信号放大,获得足够大的射频输出功率,才能馈送到天线上辐射出去,通常用于实现发射通道的射频信号放大。


  5G关键技术中的高密集组网(UDN)以及全频谱接入将带来基站数量的增加和频谱的进一步拓宽,对终端射频器件带来更多的需求。特别是5G时代基地台设备升级及小型化,成为推动射频功率放大器市场规模成长的主要动力。据统计,功率放大器占基地台成本比重约25~30%,具有举足轻重角色。目前投入射频功率放大器业者众多,包括NXP、Qorvo、Ampleon、Infineon、Sumitomo、Gree、UMS等,随着需求的增加,兆亿微波商城对各种品牌射频功率放大器长期备货,后续供应市场需求。


  功率放大器日益小型化。随着无线通讯新标准、新技术的不断发展,基站朝着宽带化、多模化、集成化等方向不断演进,这要求提高射频PA的各种性能,进一步降低成本、减少尺寸与重量,同时拥有良好的线性度、高输出功率及效率。5G对射频组件需求的提升将大幅提升基站射频行业的市场空间,高度的集成化需求,同时也将推动功率放大器等射频组件工艺进一步升级,产品将更加的小型化。此外,在基站设备中,射频功放的能耗占到总能耗的60%左右,因此,大带宽、高效率、小体积,轻重量、低成本的射频功率放大器成为了未来移动运营商降低运营成本、实现绿色节能的最为有效的手段。


  GAN功率器件将成为PA的主流技术。目前针对3G和LTE基站市场的功率放大器主要有硅基LDMOS和GaAS两种。但随着5G带来的多频带载波聚合和大规模MIMO等新技术出现新要求,现有的硅基LDMOS和GaAS解决方案局限性不断凸显,氮化镓成为中高频段主要技术方向。


  传统LDMOS技术疲态已现


  未来5G商用频段主要在3.5GHz,LDMOS功率放大器的带宽会随着频率的增加而大幅减少,LDMOS 仅在不超过约3.5GHz的频率范围内有效,因此在3.5GHz频段LDMOS的性能已开始出现明显下滑。5G基站AAU功率大幅提升,单扇区功率从4G时期的50W左右提升到5G时期的200W左右,传统的LDMOS制程将很难满足性能要求。


  GaAs技术适用性有限


  GaAs功率放大器虽然能够满足高频通信的要求,但其输出功率与GaN器件相比多有逊色。对于小基站(微基站)不需要很高的功率,现有GaAs技术仍具有优势。


  GaN技术具有显著优势


  HEMT利用髙迁移率的二维电子气2DEG工作,具有超高速,低功耗和低噪声的优点。GaN具有的压电极化效应可以显著地提高HEMT中的2DEG迁移率和密度,采用GaN材料的HEMT具有高跨导、高工作频率、饱和电流的显著优势。随着半导体材料工艺的进步,氮化镓(GaN)正成为中高频频段PA主要技术路线,GaN技术优势包括能源效率提高、带宽更宽、功率密度更大、体积更小,使之成为LDMOS的天然继承者。根据Yole数据显示,预计到2025年GaN将主导RF功率器件市场,抢占基于硅LDMOS技术的基站PA市场。


  功率放大器市场潜力巨大


  在4G建设高峰期,国内市场平均每年功率放大器的市场空间约在42亿元。考虑到单站功率放大器价格的大幅提升,到了5G时代,单站价格的大幅上涨将推动功率放大器的总市场空间大幅提升。未来,随着毫米波等高频段技术的成熟,GaN 作为主流技术将成为必然。


  5G基站引入大规模阵列天线,这将带动射频组件需求量大幅增加。根据目前的5G测试来看,采用64通道的MassiveMIMO技术是各个设备商的主流测试选择。未来64通道的天线阵列将容纳64个功率放大器等器件。据华泰证券研究所统计,预计2025年国内功率放大器市场规模将达到40亿元左右,而在2020年-2023年5G发展高峰期,功率放大器市场规模将超过100亿元。


在线留言询价
推荐阅读
  • 点击次数: 0
    2026-02-05
    一、定义AD5160是一款适合256位调整应用的2.9 mm x 3 mm紧凑型封装解决方案,可实现与机械电位器或可变电阻器相同的电子调整功能,而且具有增强的分辨率、固态可靠性和出色的低温度系数性能。游标设置可通过SPI兼容型数字接口控制。游标与固定电阻任一端点之间的电阻值,随传输至RDAC锁存器中的数字码呈线性变化。该器件采用2.7 V至5.5 V电源供电,功耗小于5 µA,适合电池供电的便携式应用。二、特征端到端电阻:5kΩ、10kΩ、50kΩ、100kΩ紧凑型SOT-23-8(2.9毫米×3毫米)封装SPI兼容接口开机预设为中等规模单电源:2.7 V至5.5 V低温系数:45 ppm/°C低功耗,IDD=8μA宽工作温度:-40°C至+125°C三、应用新设计中的机械电位计更换压力、温度、位置、化学和光学传感器的传感器调节射频放大器偏置增益控制和偏移调整
  • 点击次数: 0
    2026-02-05
    布局对所有开关稳压器都很重要,但对于高开关频率的稳压器尤为重要。为了实现高效率、良好的调节性能、良好的稳定性和低噪声,需要精心设计的 PCB 布局。设计 PCB 时请遵循以下准则:输入旁路电容将输入旁路电容 CIN 尽可能靠近 PVIN1 引脚、PVIN2 引脚和 PVINSYS 引脚将每个引脚单独布线至该电容的焊盘,以最小化功率输入之间的噪声耦合,而不是在器件处将三个引脚连接在一起可在 PVINSYS 引脚上使用单独的电容以获得最佳噪声性能高电流路径使高电流路径尽可能短。这些路径包括:CIN1、L1、L2、D1、D2、COUT1、COUT2 和 PGND 之间的连接它们与 ADP5071 的连接接地处理在电路板顶层将 AGND 和 PGND 分开。这种分离可避免 AGND 被开关噪声污染不要将 PGND 连接到顶层布局上的 EPAD通过过孔将 AGND 和 PGND 都连接到电路板地平面理想情况下,将 PGND 连接到电路板上输入和输出电容之间的某一点将其 EPAD 通过过孔单独连接到该接地层,并尽可能靠近 CVREF 和 CVREG 电容之间的位置连接 AGND其他关键准则使高电流走线尽可能短而宽,以最小化寄生电感(会导致尖峰和电磁干扰 EMI)避免在任何连接到 SW1 和 SW2 引脚的节点附近或电感 L1 和 L2 附近布置高阻抗走线,以防止辐射开关噪声注入将反馈电阻尽可能靠近 FB1 和 FB2 引脚放置,以防止高频开关噪声注入将上部反馈电阻 RFT1 和 RFT2 的顶端,或从 COUT1 和 COUT2 顶端到它们的走线尽可能靠近布置,以实现最佳输出电压检测将补偿元件尽可能靠近 COMP1 和 COMP2 放置。不要与反馈电阻共享到过孔地平面的过孔,以避免将高频噪声耦合到敏感的 COMP1 和 COMP2 引脚将 CVREF 和 CVREG 电容尽可能靠近 V...
  • 点击次数: 0
    2026-02-05
    ADP5071是一款双通道高性能DC-DC稳压器,可产生独立调节的正供电轨和负供电轨。2.85 V至15 V的输入电压范围支持各种应用。两个稳压器中的集成主开关可产生高达+39 V的可调正输出电压,以及低至输入电压以下−39 V的负输出电压。那么,它都具备哪些特征呢?• 宽输入电源电压范围:2.85 V至15 V• 产生调节良好的独立电阻可编程VPOS和VNEG输出• 升压调节器产生VPOS输出• 可调正输出至39 V• 集成2.0 A主开关• 可选单端初级电感转换器(SEPIC)配置用于自动升压/降压• 反相稳压器产生VNEG输出• 可调负输出至VIN − 39 V• 集成1.2 A主开关• 正输出和负输出均能真正关断• 1.2 MHz/2.4 MHz开关频率,可选外部频率同步范围为1.0 MHz至2.6 MHz• 电阻可编程软启动定时器• 压摆率控制,降低系统噪声• 各自独立的精确使能和灵活的启动序列控制支持对称启动、VPOS优先或VNEG优先• 错相工作• UVLO、OCP、OVP和TSD保护• 4 mm × 4 mm、20引脚LFCSP和20引脚TSSOP• 结温范围:-40°C至+125°C• ADIsimPower工具集支持因此常常被应用于保护功能双极放大器、ADC、DAC和多路复用器、电荷耦合器件(CCD)偏压电源、光学模块供应以及射频功率放大器(PA)偏置中。
  • 点击次数: 0
    2026-02-05
    LT3092 集成了多项保护功能,非常适合电池供电电路及其他应用。除正常的电路保护功能(如限流和热限流)外,LT3092 还能保护自身免受:反向输入电压反向输出电压反向 OUT 至 SET 引脚电压限流保护和热过载保护可防止 IC 在输出电流过载条件下受损。正常工作时,结温不要超过 125°C。热关断电路的典型温度阈值为 165°C,具有约 5°C 的迟滞。LT3092 的 IN 引脚可承受相对于 SET 和 OUT 引脚 ±40V 的电压。如果 OUT 大于 IN,反向电流流动小于 1 mA(通常低于 100 µA),保护 LT3092 和敏感负载。箝位二极管和 1 kΩ 限流电阻保护 LT3092 的 SET 引脚相对于 OUT 引脚电压。这些保护组件通常仅在瞬态过载条件下承载电流。这些器件的尺寸设计可处理 ±10V 差分电压和 ±15 mA 跨引脚电流,无需担心。
  • 点击次数: 0
    2026-02-05
    选择 RSET 和 ROUT在上图中,两个电阻 RSET 和 ROUT 共同决定输出电流的值。现在问题来了:虽然知道这两个电阻的比值,但每个电阻应该取什么值呢?首先选择 RSET。所选值应产生足够的电压,以最小化 SET 和 OUT 引脚之间失调引起的误差。一个合理的起始电平是 RSET 两端 200 mV 的电压(RSET 等于 20 kΩ)。由此产生的失调电压误差为百分之几。RSET 两端的电压越低,由失调引起的误差项就越大。从这一点出发,选择 ROUT 很容易,因为它是从 RSET 进行的直接计算。然而,需要注意的是,电阻误差也必须考虑在内。虽然 RSET 两端较大的电压降可以最小化失调引起的误差,但它们也会增加所需的工作裕量(headroom)。获得最佳温度系数并不需要使用昂贵的低 ppm 温度系数电阻。相反,由于 LT3092 的输出电流由 RSET 与 ROUT 的比值决定,这些电阻应具有匹配的温度特性。由相同材料制成的较便宜的电阻将提供匹配的温度系数。
热门分类
关于我们

───  公众号二维码  ───

兆亿微波商城微信公众号

兆亿微波商城www.rfz1.com是一个家一站式电子元器件采购平台,致力于为广大客户提供高质量、高性能的电子元器件产品。产品覆盖功放器件、射频开关、滤波器、混频器、功分器、耦合器、衰减器、电源芯片、电路板及射频电缆等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为客户提供一站式供应链采购服务。 

  • 品质 • 正品行货 购物无忧
  • 低价 • 普惠实价 帮您省钱
  • 速达 • 专业配送 按时按需
Copyright ©2020 - 2021 兆亿微波科技有限公司
X
1

QQ设置

    1
3

SKYPE 设置

4

阿里旺旺设置

5

电话号码管理

电话 电话 电话
010-62975458
    1
6

二维码管理

    1
返回顶部
展开