嗨,欢迎来到兆亿微波官方商城!
服务热线: 010-62975458  17600099251
购物车图片 购物车 ( )
全部商品分类

一起来探讨一下RF放大器模型结构

2021/1/18 10:57:28
浏览次数: 21

  本文将探讨一些将线性S参数数据与非线性数据(如噪声系数、IP3、P1dB和PSAT)相结合的RF放大器模型结构。本文还会展示系统级仿真结果,以评估其对实际特性建模的准确程度。


一起来探讨一下RF放大器模型结构

一起来探讨一下RF放大器模型结构

  S参数


  S参数数据集是迄今为止使用非常广泛的RF仿真模型。它们是标准化的表格式数据集,包括不同频率下的输入回波损耗、增益、反向隔离和输出回波损耗,所有这些均为矢量格式。数据一般在驱动信号远低于信号压缩点的小信号条件下收集。S参数通常用于级联增益仿真、输入和输出匹配网络的设计以及稳定性的评估。然而,S参数不包含器件的噪声、压缩或失真特性的信息。


  Keysight Sys-参数


  表1列出了18 GHz至44 GHz、0.5 W功率放大器ADPA7002的sys-参数数据集的一部分。该sys-参数器件模型结构由Keysight定义,用于其PathWave RF频率合成(Genesys)和PathWave系统设计(SystemVue) RF电路与系统仿真器。数据集的表格结构包括了不同频率下的S参数数据以及相应的噪声、三阶交调和1 dB压缩数据。这些数据集提供了足够的信息,支持对RF信号电平、级联增益和反向隔离进行仿真。但是,IP3、P1dB和噪声系数数据的纳入为RF功率扫描和信噪比仿真提供了可能性。另外,还可以在器件的工作频率范围内进行高阶信号特性仿真,例如ACLR和EVM。


  ADI公司维护着一个丰富的RF放大器和混频器sys-参数库,该库可供下载,而且也包含在Keysight Genesys和SystemVue安装程序中。图1显示了Keysight Genesys的屏幕截图。ADI公司的sys-参数库可通过器件选择器轻松获取。每个器件的sys-参数器件模型均包含表1所示的数据,以及模型属性窗口中包含的额外信息。此额外数据包括电源信息以及PSAT和OIP2相对于OP1dB的默认偏移。

一起来探讨一下RF放大器模型结构


  评估sys-参数模型的准确性


  为了评估sys-参数模型的准确性,我们现在将对实测结果和仿真进行一系列比较。图2显示了HMC788A(10 MHz至10 GHz RF增益模块)在10 GHz时的功率扫描的实测和仿真结果。可以看到,仿真功率扫描与实测数据非常接近。仿真器使用器件的增益和OP1dB数据以及PSAT_Delta来生成所示的图形。在本例中,PSAT_Delta为2 dB。这导致PSAT值比OP1dB水平高2 dB,这是GaAs RF放大器的典型默认值。

一起来探讨一下RF放大器模型结构

一起来探讨一下RF放大器模型结构

一起来探讨一下RF放大器模型结构


  AM到AM和AM到PM失真


  为了更细致地研究仿真压缩特性,我们可以看看AM到AM和AM到PM失真。图3所示的实测和仿真结果是针对 HMC930A的。测得的AM到AM失真与仿真非常接近。但是,仿真结果看不出AM到PM失真,这是不正确的。这是因为器件模型和数据集仅包含小信号相位信息(即S21)。虽然仿真器可以使用器件模型中的OP1dB和PSAT_Delta数据来估算AM到AM失真,但它没有任何大信号S参数数据可供使用。在这种情况下,使用更详细的模型,例如X-参数格式(X-参数模型内置与电平相关的S参数),会很合适。


  氮化镓放大器的功率扫描仿真


  图4显示了10 W氮化镓(GaN) RF放大器 HMC1114LP5DE在3.2 GHz时的功率扫描。GaN RF放大器的压缩特性往往比GaAs器件要缓和得多。这需要调整PSAT_Delta,即1 dB压缩点与饱和点之差。在这种情况下,基于观察到的测量值,该变化量已设置为7 dB。虽然仿真器在某些情况下会因变化量较大而产生警告,但它仍会正确仿真并产生与实测性能非常接近的结果。


  ACLR仿真


  随着我们从CW信号测量和仿真转向调制信号,sys-参数数据集的价值变得更大。虽然有关器件增益、压缩、IP3和噪声系数的信息可在器件数据手册中轻松获得,但显示调制信号下性能的曲线不大可能在为一般用途而设计的器件数据手册中找到。另外,如果不进行仿真或测量,ACLR和EVM之类的指标也不容易预测。


  图5显示了0.25 W的驱动放大器 ADL5320在2140 MHz时,由5 MHz宽载波驱动下的功率扫描的仿真结果。仿真载波由11个均匀间隔的子载波组成,ACLR在5 MHz载波偏移下进行测量。

一起来探讨一下RF放大器模型结构


  仿真表明,ACLR在–15 dBm的输入功率下达到了最优值。在此输入功率以下,ACLR以1 dB/dB的比率随输入功率而降低。曲线的此区域主要由噪声系数数据决定。当输入功率提高到–15 dBm以上时,ACLR的衰减速率与器件的IP3密切相关。值得注意的是,此仿真的结果依赖于噪声系数数据(低功率时)和IP3数据(高功率时)来产生在宽功率范围内都很准确的ACLR扫描。


  该图还包括实测数据(蓝色)。对于–15 dBm的输入功率水平,它未达到相同的最优水平,这是由于测量设置的限制所致。值得注意的是,随着输入功率水平的增加,实测ACLR下降得更快。这是因为器件的OIP3会随输入/输出功率水平而稍有下降(理想情况下,它不应改变)。器件模型数据集中的IP3是单个数据集,不随功率水平而变化;可以认为它是器件的小信号IP3。这又是一个X-参数模型及其更详细的电平相关性建模可能会产生更准确仿真的例子。


  EVM仿真


  sys-参数模型还可用来可靠地进行EVM仿真。图6显示了EVM相对于RF功率扫描的实测和仿真结果,输入信号为1 MSPS、16 QAM载波,驱动50 MHz至4 GHz增益模块 ADL5602。这表明在低功率和高功率水平下,测量与仿真之间都有出色的相关性。


  温度仿真


  ADI库中的默认sys-参数数据集仅包含环境温度数据。但是,通过向包含温度数据的数据集添加额外工作表可以扩展模型。图7显示了18 GHz至44 GHz、1 W功率放大器 ADPA7007的数据集。该数据集具有多个工作表,包含–55°C、+25°C和+85°C下的增益、噪声和失真数据。Genesys和SystemVue仿真器可以利用这三个数据点生成其他温度下的插值数据,如图7所示。


  在ADS中进行仿真


  sys-参数数据集对Keysight Genesys和SystemVue是原生数据集,但不适用于Keysight ADS。有一种解决办法可以将sys-参数数据集导入ADS,从而进行噪声、失真和压缩仿真。这需要使用Amplifier2模型。Amplifier2模型对Keysight ADS是原生的,提供与sys-参数模型类似的功能。图8显示了包括Amplifier2模型的ADS原理图。该原理图还包含两个数据访问器件:DAC1和DAC2。这些DAC用于将sys-参数数据与Amplifier2模型相关联。噪声系数、OIP3和OP1dB数据格式化为文本文件,并通过DAC1器件与Amplifier2模型相关联。DAC2器件用于将S-参数数据与Amplifier2模型相关联。这将在ADS中产生一个Amplifier2模型,使用该模型可执行上面讨论过的所有仿真,但是在Keysight ADS中执行。


  使用此方法时须小心。当执行RF功率扫描,Amplifier2模型被强驱进入压缩时,仿真性能往往与观察到的实测性能有很大差异。此外,创建一个使用S-参数数据及噪声、失真和压缩数据的Amplifier2模型,适合于具有良好基线输入和输出回波损耗(S11和S22)的器件,大多数不需要外部RF匹配器件的ADI RF放大器就是这种情况。通过将标量增益添加到DAC1器件并省略S-参数数据(即省略DAC2),可以创建一个更简单的Amplifier2模型。

一起来探讨一下RF放大器模型结构


  结论


  sys-参数数据集代表了一种新颖且有用的RF放大器仿真工具。它们比S-参数更强大,后者不能进行噪声、失真和压缩建模。它们不像X-参数模型那么复杂,后者可以改善依赖模型级别的特性,例如AM到PM失真和ACLR。但是,sys-参数模型具有简单的表格式结构,可以通过将S-参数数据与噪声系数、OIP3和OP1dB数据结合起来轻松创建。仿真和实测数据的比较显示出极好的一致性。尽管sys-参数模型无法在ADS中使用,但可以利用一个相对简单的流程来迁移数据集,以使用ADS原生的Amplifier2模型结构。


  ADI公司致力于维护和扩充其sys-参数模型库。随着新模型添加到库中,我们将增加对温度仿真的支持。

一起来探讨一下RF放大器模型结构


在线留言询价
推荐阅读
  • 点击次数: 1
    2026-02-04
    保护特性LT3042 集成了多项针对电池供电应用的保护特性。精密电流限制和热过载保护可防止 LT3042 在输出端发生过载和故障条件时损坏。正常工作时,结温不得超过 125°C(E-级、I-级)或 150°C(H-级、MP-级)。为保护 LT3042 的低噪声误差放大器,SET-TO-OUTS 保护钳位将 SET 与 OUTS 之间的最大电压限制在一定值,通过钳位的最大直流电流为 20mA。因此,对于 SET 由电压源主动驱动的应用,电压源必须限制在 20mA 或更小。此外,为限制瞬态故障条件下流过这些钳位的瞬态电流,SET 引脚电容(CSET)的最大值应限制为 22μF。LT3042 还集成了反向输入保护,IN 引脚可承受高达 -20V 的反向电压,而不会产生任何输入电流,也不会在 OUT 引脚产生负电压。该稳压器可保护自身和负载免受反向接入电池的影响。在需要备用电池的电路中,可能出现几种不同的输入/输出条件。当输入端被拉至 GND、某个中间电压或开路时,输出电压可能保持。在所有这些情况下,反向电流保护电路可防止电流从输出端流向输入端。然而,由于 OUTS-TO-SET 钳位的存在,除非 SET 引脚悬空,否则电流可以流过 SET 引脚电阻到 GND,以及通过输出过冲恢复电路流过高达 15mA 到 GND。通过在 OUTS 和 SET 引脚之间放置一个肖特基二极管(阳极在 OUTS 引脚),可以显著减小通过输出过冲恢复电路的电流。
  • 点击次数: 1
    2026-02-04
    过载恢复与许多 IC 电源稳压器一样,LT3042 集成了安全工作区(SOA)保护。SOA 保护在输入-输出差分电压大于 12V 时激活。随着输入-输出差分电压的增加,SOA 保护会降低电流限制,并将内部功率晶体管保持在安全工作区域内,适用于所有输入-输出电压值,直至 LT3042 的绝对最大额定值。LT3042 为所有输入-输出差分电压值提供一定水平的输出电流。有关详细信息,请参阅典型性能特性部分的电流限制曲线。首次上电且输入电压上升时,输出跟随输入,保持输入-输出差分电压较低,以使稳压器能够提供大输出电流并启动进入高输出负载。然而,由于电流限制折返,在高输入电压下,如果输出电压较低且负载电流较高,可能会出现问题。这种情况发生在短路移除后,或输入电压已开启后 EN/UV 引脚被拉高。在这种情况下,负载线与输出电流特性曲线在两个点相交。稳压器现在有两个稳定的工作点。由于这种双重交叉,输入电源可能需要循环降至零并重新上电以使输出恢复。其他具有折返电流限制保护的线性稳压器(如 LT1965 和 LT1963A 等)也表现出这种现象,因此这并非 LT3042 独有。
  • 点击次数: 0
    2026-02-04
    PSRR 与输入电容对于利用 LT3042 作为开关转换器后级稳压的应用,直接在 LT3042 输入端放置电容会导致交流电流(在开关频率下)在 LT3042 附近流动。这种相对较高的高频开关电流产生磁场,耦合到 LT3042 的输出端,从而降低其有效 PSRR。虽然高度依赖于 PCB 设计,但开关前级稳压器、输入电容等因素导致的 PSRR 衰减在 1MHz 时很容易超过 30dB。即使将 LT3042 从电路板上拆下,这种衰减依然存在,因为它实际上降低了 PCB 板本身的 PSRR。虽然对于传统低 PSRR 的 LDO 可以忽略,但 LT3042 的超高 PSRR 需要仔细注意高阶寄生效应,以提取稳压器提供的全部性能。为减轻 LT3042 附近高频开关电流的流动,只要开关转换器的输出电容距离 LT3042 超过一英寸,就可以完全移除 LT3042 的输入电容。磁耦合随距离增加而迅速减小。然而,如果开关前级稳压器距离 LT3042 太远(保守估计超过几英寸),且没有输入电容,与任何稳压器一样,LT3042 的输入端将在寄生 LC 谐振频率处振荡。此外,通常非常常见(且是首选做法)的做法是用一定容值的电容旁路稳压器输入端。因此,此选项在其适用范围内相当有限,并非最理想的解决方案。为此,LTC 建议使用 LT3042 演示板(DC2246B)布局以实现最佳可能的 PSRR 性能。LT3042 演示板布局利用磁场抵消技术来防止这种高频电流流动引起的 PSRR 衰减——同时保留输入电容的使用。
  • 点击次数: 0
    2026-02-04
    稳定性与输出电容LT3042 需要输出电容来保证稳定性。鉴于其高带宽,LTC 建议使用低 ESR 和低 ESL 的陶瓷电容。为保证稳定性,需要最小 4.7μF 的输出电容,ESR 低于 50mΩ,ESL 低于 2nH。鉴于使用单个 4.7μF 陶瓷输出电容即可实现的高 PSRR 和低噪声性能,更大的输出电容值仅略微改善性能,因为稳压器带宽随输出电容增加而降低——因此,使用大于最小 4.7μF 的输出电容几乎没有收益。尽管如此,更大的输出电容值确实可以减小负载瞬态期间的峰值输出偏差。注意,用于去耦 LT3042 供电的各个元件的旁路电容会增加有效输出电容。需额外考虑所用陶瓷电容的类型。它们采用多种电介质制造,每种在温度和施加电压下具有不同的特性。最常用的电介质具有 EIA 温度特性代码 Z5U、Y5V、X5R 和 X7R。Z5U 和 Y5V 电介质适合在小封装中提供高电容值,但它们往往具有更强的电压和温度系数,如图 4 和图 5 所示。当用于 5V 稳压器时,16V 10μF Y5V 电容在工作温度范围内,在施加的直流偏置电压下,有效值可低至 1μF 至 2μF。X5R 和 X7R 电介质具有更稳定的特性,因此更适合 LT3042。X7R 电介质在温度范围内具有更好的稳定性,而 X5R 成本较低且可提供更 高容值。尽管如此,使用 X5R 和 X7R 电容时仍需谨慎。X5R 和 X7R 代码仅指定工作温度范围和温度引起的最大电容变化。虽然 X5R 和 X7R 因直流偏置引起的电容变化优于 Y5V 和 Z5U 电介质,但仍可能显著降低到不足水平。如图 6 所示,电容器的直流偏置特性往往随元件封装尺寸增大而改善,但强烈建议在工作电压下验证预期电容值。附图:
  • 点击次数: 0
    2026-02-04
    一、概述SGM2211 是一款采用 CMOS 技术设计的低噪声、高 PSRR、快速瞬态响应、低压差线性稳压器。它提供 500mA 输出电流能力。工作输入电压范围为 2.7V 至 20V。可调输出电压范围为 1.2V 至 (VIN - VDROP)。其他功能包括逻辑控制关断模式、短路电流限制和热关断保护。SGM2211 具有自动放电功能,可在禁用状态下快速放电 VOUT。SGM2211 采用绿色 TDFN-2×2-6AL 和 SOT-23-5 封装。它的工作温度范围为 -40℃ 至 +125℃。二、特征工作输入电压范围:2.7V 至 20V固定输出电压:1.2V、1.5V、1.8V、2.5V、2.8V、3.0V、3.3V、3.8V、4.2V 和 5.0V可调输出:1.2V 至 (VIN - VDROP)(对于 TDFN 封装,输出电压可在初始固定输出电压之上调节)输出电流:500mA输出电压精度:25°C 时 ±1%低静态电流:43μA(典型值)低压差电压:500mA、VOUT = 5.0V 时为 360mV(典型值)低噪声:VOUT = 1.2V 时为 9.3μVRMSVOUT = 2.8V 时为 11μVRMSVOUT = 5.0V 时为 14μVRMS高 PSRR(VIN = VOUT(NOM) + 1V):1kHz 时为 100dB(典型值)10kHz 时为 83dB(典型值)100kHz 时为 52dB(典型值)1MHz 时为 55dB(典型值)电流限制和热保护优异的负载和电源瞬态响应带输出自动放电功能可采用小尺寸陶瓷电容稳定工作可编程软启动(仅 TDFN 封装)关断电源电流:1.2μA(典型值)VOUT VIN 时反向电流保护VOUT 对 GND 短路时折返电流限制保护可编程精密使能工作温度范围:-40°C 至 +125&...
热门分类
关于我们

───  公众号二维码  ───

兆亿微波商城微信公众号

兆亿微波商城www.rfz1.com是一个家一站式电子元器件采购平台,致力于为广大客户提供高质量、高性能的电子元器件产品。产品覆盖功放器件、射频开关、滤波器、混频器、功分器、耦合器、衰减器、电源芯片、电路板及射频电缆等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为客户提供一站式供应链采购服务。 

  • 品质 • 正品行货 购物无忧
  • 低价 • 普惠实价 帮您省钱
  • 速达 • 专业配送 按时按需
Copyright ©2020 - 2021 兆亿微波科技有限公司
X
1

QQ设置

    1
3

SKYPE 设置

4

阿里旺旺设置

5

电话号码管理

电话 电话 电话
010-62975458
    1
6

二维码管理

    1
返回顶部
展开