嗨,欢迎来到兆亿微波官方商城!
服务热线: 010-62975458  17600099251
购物车图片 购物车 ( )
全部商品分类

运用传感器共连优化电容式感应系统中的电源功耗

2021/1/21 14:58:28
浏览次数: 4

  在消费、家用电器、汽车、工业等众多电子产品中,电容式触摸按键正在快速替代传统的机械按键。虽然电容式按键拥有优于机械按键的诸多优势,但是系统设计工程师在创建电容式感应系统时需要权衡某些参数。其中包括信噪比(SNR)、响应时间和功耗。


  由于电容式传感器容易受到控制器内部及外部噪声的影响,因此SNR对于确保电容式感应系统的可靠性能至关重要。本文重点将探讨另外两个参数。


  响应时间能够代表电容式传感器响应触摸的速度。通常需要在功耗与响应时间之间做出权衡。我们在本文中会探讨设计人员优化功耗过程中需要考虑的响应时间问题。


  系统需要根据寄生电容、触摸灵敏度等传感器特征在特定时间(称为扫描时间)内对电容式传感器进行扫描。扫描时间是电容式感应控制器的功耗主因。功耗优化对于电池驱动的设备(手机以及包括心率监视器在内的可穿戴设备等)尤为重要。功耗优化可以采用多种方法,其中包括优化扫描时间以及传感器扫描频率。我们在本文中会介绍并且说明比较突出的电容式感应系统功耗优化方法之一,其称为传感器共连(ganging)。


  功耗优化


  决定功耗的关键因素是传感器的扫描时间和传感器的扫描频率。休眠电流值一般远远低于工作电流值。因此,在不使用电容式感应系统时,可以让电容式感应控制器进入休眠模式,以便降低平均电流消耗。优化电容式感应系统电源时经常采用扫描-休眠-扫描-休眠的方法(参见图1)。此方法会扫描全部传感器,然后使控制器进入低功率休眠模式。此为一个周期,随后不断重复此周期。一个扫描-休眠周期称为一个'刷新间隔'。每个刷新间隔都包含工作时间与休眠时间。'工作时间'包括扫描时间、传感器数据处理和后期传感器扫描活动,如:LED及蜂鸣器等控制反馈机制。传感器扫描时间占用了大部分的工作时间。


 运用传感器共连优化电容式感应系统中的电源功耗


  图1 使用扫描-休眠-扫描-休眠的方法时的电流曲线


  可以通过以下方法降低功耗:


  a)缩短工作时间,即缩短扫描时间或后期传感器扫描的处理时间


  b)降低给定工作时间的工作电流


  c)延长休眠时间


  传感器共连


  传感器共连是一种通过减少电容式感应控制器工作时间而降低控制器功耗的方法。随着电容式传感器的数量增加,给定刷新间隔的功耗会随之增加;如果刷新间隔降低,则功耗提高。对于一定数量的传感器,降低功率就需要增加刷新间隔。但是,这会影响传感器的响应时间。为了实现响应时间和功耗的良好平衡,我们可以把所有传感器结合在一起当做单个传感器进行扫描。这就称为传感器共连。传感器组可被视为单个传感器,而电容式感应算法会把共连的独立传感器当做单个传感器进行扫描。在检测并确认有触摸操作时,则断开传感器并进行单独扫描。


  在Cypress PSoC等器件中可以实现传感器共连,因为其中的单独传感器能够连接到全局模拟多路复用总线。在PSoC 4等混合信号器件中,可以采用一条内部模拟多路复用总线把多个传感器连接到固件内部的CapSense模块。本文末尾提供了包含模拟多路复用总线的参考设计指南,并且介绍如何把电容式传感器连接到模拟多路复用总线。


  运用传感器共连优化电容式感应系统中的电源功耗


  图2 单独扫描传感器传感器相连之后再扫描


  传感器共连用例


  1)按键/滑块共连


  在仅包含按键或滑块的应用中,在用户触摸任何按键或滑块之前,我们可以把所有按键或滑块共连,然后作为单个传感器进行扫描。为了获得良好的系统响应时间,通过把灵敏度设置为超高值能够把共连的传感器作为接近传感器进行调校。传感器的灵敏度表示传感器能够检测到的、由触摸产生的电容变化。由于采用接近感应,只要用户靠近设备,系统在用户触摸实际功能按键之前就能够做出响应,从而缩短系统的响应时间。


  例如,在没有活动时可以关闭增强按键可见度的背光LED。当用户靠近设备时,接近传感器能够探测到接近的手部并打开背光LED,从而帮助用户操作相应按键。不过,由于接近传感器极其灵敏,因此其需要更长的扫描时间,从而会增加功耗。为了进一步降低功率,可以把共连的传感器调校到更低的灵敏度,以便其可作为按键进行操作。这意味着共连的传感器仅探测用户触摸动作,而在用户触摸后所有传感器全部单独扫描。这种方法的系统响应时间比共连传感器作为接近传感器进行调校的方法要长。


  运用传感器共连优化电容式感应系统中的电源功耗

  图3 有按键及滑块的PCB


  2)接近共连


  当应用中包含多个接近传感器时-如:手势识别,所有接近传感器可以共连在一起并作为单个接近传感器进行扫描,以便在Z轴方向(从电路板来看)探测人手的接近。在探测到手部之后,单独扫描所有接近传感器,以探测X和Y轴方向的手势。这种方法的另外一个优势是系统可以快速响应人手接近,因为在接近传感器共连后可以提高接近探测距离,因此与单独扫描接近传感器相比,其能够在更远距离内探测人手。


  运用传感器共连优化电容式感应系统中的电源功耗


  图4:有多个接近传感器的PCB


  3)矩阵或触摸板设计中的行/列共连


  在包含矩阵按键或触摸板的应用中,在用户触摸矩阵按键或触摸板之前,所有行或列可以共连在一起作为单个传感器进行扫描。并不需要同时共连行与列,原因是:


  a)这样会提高共连传感器的寄生电容。寄生电容必须不超过电容式感应控制器所支持的上限。


  b)触摸板或矩阵的布局是仅共连行或列可以探测整个传感器区域的触摸。


  4)混合传感器共连


  我们来看一个其中四个按键周围有一个接近环路的应用实例。在本例中接近传感器和按键可以共连在一起作为单个传感器进行扫描。这样的话接近探测范围可以超过单独扫描接近传感器的情况。当电路板尺寸有限制、因而无法提高接近传感器大小时,可以采用此方法。


  运用传感器共连优化电容式感应系统中的电源功耗

  图5:有按键及接近传感器的PCB


  本文简要介绍了针对于电容式感应控制器,如何利用传感器共连方式优化电容式感应系统功耗的方法,同时还介绍了传感器共连的用例。


在线留言询价
推荐阅读
  • 点击次数: 1
    2025-12-17
    ZVS 隔离型转换器模块系列为高密度隔离式 DC-DC 转换器,采用零电压开关(ZVS)拓扑结构。28V 输入系列支持 16V 至 50V 的宽输入电压范围,提供 50W 输出功率,功率密度高达 334W/in³。这些转换器模块支持表面贴装,尺寸仅为 0.5 英寸见方,相比传统方案可节省约 50% 的 PCB 面积。模块开关频率高达 900kHz,允许使用更小的输入和输出滤波元件,从而进一步减小系统整体尺寸和成本。输出电压通过高性能隔离磁反馈方案采样并反馈至内部控制器,具备高带宽和良好的共模噪声抑制能力。PI31xx-00-HVMZ 系列无需外部反馈补偿,仅需极少外部元件即可构成完整解决方案。功能丰富,包括输出电压微调、输出过压保护、可调软启动、自动重启型过流保护、输入欠压/过压锁定,以及温度监控与保护功能(提供与芯片温度成比例的模拟电压,并支持关断与报警)。特性与优势效率高达 88%高开关频率降低输入滤波需求,减少输出电容专有“双钳位”ZVS 升降压拓扑专有隔离磁反馈技术小封装尺寸(0.57 in²),节省 PCB 面积超低厚度(0.265 英寸)宽输入电压范围:16–50V支持开关控制(正逻辑)宽范围输出电压微调:+10% / –20%(多数型号)温度监控(TM)与过温保护(OTP)输入欠压锁定(UVLO)、过压锁定(OVLO)与输出过压保护(OVP)自动重启型过流保护可调软启动输入/输出之间隔离电压达 2250V
  • 点击次数: 1
    2025-12-17
    使用 S 控制寄存器组进行 S 引脚脉冲控制LTC6811 的 S 引脚可用作简单的串行接口,特别适用于控制 Linear Technology 的 LT8584——一款专为大型电池组主动均衡设计的单片反激式 DC/DC 转换器。LT8584 具有多种工作模式,这些模式通过串行接口进行控制。LTC6811 可通过在每个 S 引脚上发送特定脉冲序列,与 LT8584 通信并选择其工作模式。S 控制寄存器组用于设定 12 个 S 引脚的行为,每个 4 位(nibble)定义一个 S 引脚应输出高电平、低电平,或发送 1 至 7 个脉冲的序列。表 24 列出了可发送至 LT8584 的 S 引脚行为选项。S 引脚脉冲以 6.44kHz 的频率输出(周期为 155μs),脉冲宽度为 77.6μs。脉冲序列在发送 STSCTRL 命令后启动,前提是命令的 PEC(包错误校验)正确匹配。主机可继续提供 SCK 时钟,以轮询脉冲执行状态。该轮询机制与 ADC 轮询功能类似:在脉冲序列完成前,数据输出将保持逻辑低电平。在 S 引脚脉冲执行期间,新的 STSCTRL 或 WRSCTRL 命令将被忽略。可使用 PLADC 命令来判断 S 引脚脉冲是否已完成。若 WRSCTRL 命令及其 PEC 正确接收,但数据 PEC 不匹配,则 S 控制寄存器组将被清零。如果配置寄存器组中的某个 DCC 位被置位,LTC6811 将强制将对应的 S 引脚拉低,无论 S 控制寄存器组的设置如何。因此,在使用 S 控制寄存器组时,主机应将 DCC 位保持为 0。CLRSCTRL 命令可用于快速将 S 控制寄存器组清零(全部置为 0),并强制脉冲控制逻辑释放对 S 引脚的控制。该命令在汽车应用中可用于缩短诊断控制循环时间。
  • 点击次数: 2
    2025-12-17
    C2000™ 32 位微控制器针对处理、感应和驱动进行了优化,可提高实时控制应用(如工业电机驱动器、光伏逆变器和数字电源、电动汽车和运输、电机控制以及感应和信号处理)的闭环性能。C2000 系列包括高级性能 MCU 和入门级性能 MCU。F2803x 系列微控制器将 C28x 内核和控制律加速器 (CLA) 的性能与高度集成的控制外设整合到低引脚数的器件中。该系列器件的代码与基于 C28x 的旧版代码兼容,同时具有较高的模拟集成度。一个内部稳压器实现了单电源轨运行。HRPWM 模块经过强化,可实现双边沿控制(调频)。增设了具有 10 位内部基准的模拟比较器,可直接进行路由以控制 PWM 输出。ADC 可在 0V 至 3.3V 的固定满量程范围内实施转换,支持 VREFHI/VREFLO 基准的比例运算。ADC 接口已针对低开销和延迟进行了优化。应用• 空调室外机• 电梯门自动启闭装置驱动控制• 直流/直流转换器• 逆变器和电机控制• 车载充电器 (OBC) 和无线充电器• 自动分拣设备• 纺织机• 焊接机• 交流充电(桩)站• 直流充电(桩)站• 电动汽车充电站电源模块• 车辆无线充电模块• 能量存储电源转换系统 (PCS)• 微型逆变器• 太阳能电源优化器• 串式逆变器• 交流驱动器控制模块• 线性电机分段控制器• 伺服驱动器功率级模块• 交流输入 BLDC 电机驱动器• 直流输入 BLDC 电机驱动器• 工业交流-直流• 三相 UPS• 商用网络和服务器 PSU• 商用通信电源整流器
  • 点击次数: 1
    2025-12-17
    安全注意事项LTM4643 模块未提供从输入(Vin)到输出(Vout)的电气隔离(即无 galvanic isolation)。模块内部未集成保险丝。如有必要,应在外部为每个模块配置一个慢断型保险丝,其额定电流应为最大输入电流的两倍,以防止模块在发生灾难性故障时受损。该器件支持热关断和过流保护功能。布局检查清单 / 示例尽管 LTM4643 具备高度集成性,使 PCB 布局变得简单,但为优化其电气性能与热性能,仍需注意以下布局建议:在 PCB 上使用大面积铜箔覆盖高电流路径,包括 ViN1 至 ViN4、GND、VouT1 至 VouT4。这有助于降低 PCB 导通损耗并减少热应力。将高频陶瓷输入与输出电容尽可能靠近 ViN、GND 和 VouT 引脚放置,以最小化高频噪声。在模块下方设置专用的电源接地层(power ground layer)。为降低过孔的导通损耗并减少模块热应力,应使用多个过孔连接顶层与其他电源层。请勿在焊盘上直接放置过孔,除非这些过孔已被填充(capped)或覆盖电镀(plated over)。为连接到信号引脚的元件设置独立的信号地(SGND)铜区,并在模块下方将 SGND 与 GND 连接。若多个模块并联使用,应将 Vout、VFB 和 COMP 引脚连接在一起。建议使用内层将这些引脚紧密连接。TRACK/SS 引脚可连接至一个公共电容,用于实现稳压器的软启动。在信号引脚处引出测试点,便于监测。下图是推荐的一种布局式示例,仅供参考。
  • 点击次数: 1
    2025-12-17
    LTM4643 是一款四路输出的独立非隔离型开关模式 DC/DC 电源模块,封装尺寸为 9mm × 15mm × 1.82mm,超轻薄设计。该模块具备四个独立的稳压通道,每个通道在仅需少量外部输入输出电容的情况下,可持续输出高达 3A 的电流。每个稳压器可在 4V 至 20V 的输入电压范围内,通过单个外部电阻将输出电压精确设定在 0.6V 至 3.3V 之间。若使用外部偏置电压,该模块最低可在 2.375V 的输入电压下工作。LTM4643 集成了四个独立的恒定频率控制、导通时间谷值电流模式稳压器、功率 MOSFET、电感器及其他支持性分立元件。典型开关频率设定为 1.2MHz。对于对开关噪声敏感的应用,该 μModule 稳压器可通过外部时钟信号在 850kHz 至 1.5MHz 范围内实现同步。采用电流模式控制与内部反馈环路补偿,使 LTM4643 模块在宽范围的输出电容条件下(即使全部使用陶瓷电容)仍具备良好的稳定性裕度与瞬态响应性能。电流模式控制还提供了将任意独立稳压通道并联的灵活性,并可实现精确的电流共享。通过内置的通道间时钟交错功能,LTM4643 可轻松配置为 2+2、3+1 或四通道并联运行,为多轨 POL(负载点)应用提供更高的设计灵活性。此外,LTM4643 提供 CLKIN 与 CLKOUT 引脚,用于频率同步或多相并联多个器件,最多支持 8 相级联同步运行。电流模式控制还支持逐周期的快速电流监测。在过流条件下,模块提供折返式限流保护,当 VeB 电压下降时,将电感谷值电流限制为原始值的约 40%。内部过压与欠压比较器将在输出反馈电压偏离稳压点 ±10% 范围时,将开漏输出的 PGOOD 引脚拉低。在过压(OV)与欠压(UV)条件下,模块强制进入连续导通模式(CCM),但在启动阶段,当 TRACK 引脚电压上升至 0.6...
热门分类
关于我们

───  公众号二维码  ───

兆亿微波商城微信公众号

兆亿微波商城www.rfz1.com是一个家一站式电子元器件采购平台,致力于为广大客户提供高质量、高性能的电子元器件产品。产品覆盖功放器件、射频开关、滤波器、混频器、功分器、耦合器、衰减器、电源芯片、电路板及射频电缆等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为客户提供一站式供应链采购服务。 

  • 品质 • 正品行货 购物无忧
  • 低价 • 普惠实价 帮您省钱
  • 速达 • 专业配送 按时按需
Copyright ©2020 - 2021 兆亿微波科技有限公司
X
1

QQ设置

    1
3

SKYPE 设置

4

阿里旺旺设置

5

电话号码管理

电话 电话 电话
010-62975458
    1
6

二维码管理

    1
返回顶部
展开