嗨,欢迎来到兆亿微波官方商城!
服务热线: 010-62975458  17600099251
购物车图片 购物车 ( )
全部商品分类

微波低噪声放大器的主要技术指标、作用及方案

2021/2/4 13:51:50
浏览次数: 10

  1 微波低噪声放大器的作用


  一般情况下,一个接收系统的接收灵敏度可由以下计算公式来表示:

微波低噪声放大器的主要技术指标、作用及方案

  由上式可见,在各种特定(带宽BW、解调S/N已定)的无线通讯系统中,能有效提高灵敏度的关键因素就是降低接收机的噪声系数NF,而决定接收机噪声系数的关键部件则是处于接收机最前端的低噪声放大器。


  图1所示是接收机射频前端的原理框图。由图1可见,低噪声放大器的主要作用是放大天线从空中接收到的微弱信号,降低噪声干扰,以供系统解调出所需的信息数据,所以,低噪声放大器的设计对整个接收机来说是至关重要的。


  微波低噪声放大器的主要技术指标、作用及方案


  2 微波低噪声放大器的主要技术指标


  2.1 噪声系数


  噪声系数的定义为 放大器 输入信噪比与输出信噪比的比值,即:


  微波低噪声放大器的主要技术指标、作用及方案


  对单级放大器而言,其噪声系数的计算为:


  微波低噪声放大器的主要技术指标、作用及方案


  其中F mi n为 晶体管 最小噪声系数,是由放大器的管子本身决定的,Γopt、Rn和Γs分别为获得Fmin时的最佳源反射系数、 晶体 管等效噪声 电阻 以及晶体管输入端的源反射系数。


  对多级放大器。其噪声系数的计算应为:


  微波低噪声放大器的主要技术指标、作用及方案


  其中NFn为第n级放大器的噪声系数,Gn为第n级放大器的增益。


  对噪声系数要求较高的系统,由于噪声系数很小,用噪声系数表示很不方便,故常用噪声温度来表示,噪声温度与噪声系数的换算关系为:


  微波低噪声放大器的主要技术指标、作用及方案


  其中 Te 为放大器的噪声温度,T0=2900K,NF为放大器的噪声系数。


 微波低噪声放大器的主要技术指标、作用及方案


  2.2 放大器增益


  放大器的增益定义为放大器输出功率与输入功率之比:


  G=Pout/ Pi n(7)


  通常提高低噪声放大器的增益对降低整机的噪声系数非常有利,但低噪声放大器的增益过高会影响整个接收机的动态范围。所以,一般来说,低噪声放大器的增益确定应与系统的整机噪声系数、接收机动态范围等结合起来考虑。


  2.3 反射系数


  由式(3)可知,当Γs=Γopt时,放大器的噪声系数最小,NF=NFmin,但此时从功率传输的角度来看,输入端会失配,所以,放大器的功率增益会降低,但有些时候,为了获得最小噪声,适当的牺牲一些增益也是低噪声放大器设计中经常采用的一种办法。


  另外,低噪声放大器的输入输出驻波比、动态范围、工作频率、工作带宽及带内增益平坦度等指标也很重要,设计时也需加以考虑。


  3 电路仿真 设计


  本 电路 设计要求的频率范围为1.95~2.0 5G Hz,噪声系数:为Nf应小于2dB,带内增益为G大于10dB,输入,输出 阻抗 为50Ω。现以上述指标来进行电路晶体管的选择以及ADS仿真。


  3.1 晶体管的选择


  根据放大器的性能要求,本设计选用HP公司的AT-41511作为核心器件来进行设计。由于在ADS软件中包含有这种型号晶体管的器件模型,因此,在设计和仿真过程中可以直接使用,而不必再自己建造器件模型。


  3.2 ADS仿真综合指标的实现


  仿真时,可将噪声系数、放大器增益、稳定系数全部加入优化目标中进行优化,并通过对带内放大器增益的限制来满足增益平坦度指标,最终达到各个指标要求。反复调整优化方法并优化目标中的权重(Weight),也可以对输入匹配网络进行优化。但是,对部分电路指标的优化也可能导致其它某些指标的恶化,此时可以根据需要增加一些优化变量。


  图2所示是经过一次随机优化的S参数图。


  微波低噪声放大器的主要技术指标、作用及方案


  仿真结果表明,该电路基本上已经达到了比较好的性能,且具有良好的输入输出匹配,较高的增益和稳定系数,同时噪声系数也比较好。


  3.3 封装模型仿真设计


  进行完sp模型设计以后,还需要将sp模型替换为封装模型来做进一步设计。具体需要进行的工作如下:


  (1)将sp模型替换为封装模型;


  (2)选择直流工作点并添加偏置电压;


  (3)进行馈电电路的设计(电阻分压、扇形线、高阻线等的使用);


  (4)替换为封装模型后各项参数可能会有所变化,如不满足技术指标,还可以对封装模型的原理图再进行仿真优化。


  设计封装模型时。可用图3所示的电路来对器件的I-V特性进行仿真,以选择其直流工作点。


  微波低噪声放大器的主要技术指标、作用及方案


  在设计偏置电路时,为了防止交流信号对直流电源的影响,可在电源与馈电点之间添加1/4波长的高阻线以遏制交流信号。如果电路中有终端 短路 的微带线,为了避免直流短路,还应在接地端插入隔直 电容 。


  4 结束语


  从仿真设计的过程可以看到,使用Agilent公司的ADS软件进行 射频 电路设计、仿真和优化是非常方便的。它含有丰富原理图模型库、多种仿真分析方式和一系列使用简便而功能强大的设计工具。这都可使复杂的射频电路设计工作变得简便快捷,省去了大量人工计算设计的过程,提高了设计工作效率。本文给出的微波低噪声放大器的设计还是比较成功的,基本达到了指标要求。


在线留言询价
推荐阅读
  • 点击次数: 1
    2025-12-05
    Qorvo的TGA2594-HM是基于Qorvo 0.15um GaN-on-SiC工艺制造的封装功率放大器。TGA2594-HM的工作频率为27至31 GHz,饱和输出功率为36.5 dBm,功率附加效率为25%,小信号增益为25 dB。TGA2594-HM采用密封的22引线7x7 mm陶瓷QFN,设计用于印刷电路板的表面安装。该封装采用铜基,提供卓越的热管理。TGA2594-HM非常适合支持商业和军事应用。两个射频端口都集成了隔直电容,完全匹配50欧姆。无铅,符合RoHS标准。特征•频率范围:27-31GHz•磅:PIN=14 dBm时为36.5 dBm•PAE:25%连续波•小信号增益:25 dB•IM3:-35 dBc@25 dBm磅/音•偏压:VD=20 V,IDQ=140 mA,VG=-3 V(典型值)•包装尺寸:7 x 7 x 1.3毫米应用•军用卫星通信终端•商用卫星通信终端•点对点数字广播•点对多点数字广播引脚配置图如有型号采购及选型需求,可直接联系兆亿微波电子元件商城。
  • 点击次数: 1
    2025-12-05
    AD9963是引脚兼容的12位低功耗MxFE®转换器,提供两个采样速率为100 MSPS的ADC通道和两个采样速率为170 MSPS的DAC通道。这些转换器针对要求低功耗和低成本的通信系统的发射和接收信号路径进行了优化。数字接口提供灵活的时钟选项。发射路径可配置为1×、2×、4×和8×插值。接收路径具有一个可旁路的2×抽取低通滤波器。引脚配置图特征• 双通道10位/12位、100 MSPS ADCSNR = 67 dB, fIN = 30.1 MHz• 双通道10位/12位、170 MSPS DACACLR = 74 dBc• 5 个辅助模拟输入/输出通道• 低功耗:• 支持全双工和半双工数据接口• 72引脚、无铅小型LFCSP封装应用无线基础设施微微蜂窝基站医疗器械超声AFE便携式仪表信号发生器、信号分析仪如有型号采购及选型需求,可直接联系兆亿微波电子元件商城。
  • 点击次数: 0
    2025-12-05
    FRAC/INT 寄存器(RO)映射当 DB[2:0] 设为 000 时,访问片内 FRAC/INT 寄存器(寄存器 RO,见图 25)。RamponDB31 = 1 启用斜坡功能;DB31 = 0 关闭斜坡功能。MUXout Control片内多路复用器由 DB[30:27] 控制,真值表见图 25。12 位整数值(INT)DB[26:15] 设置 INT 值,该值是反馈分频系数的一部分。12 位 MSB 小数值(FRAC)DB[14:3] 与 LSB FRAC 寄存器(R1)中的 DB[27:15] 共同组成 25 位 FRAC 值,送入小数插值器。DB[14:3] 为 FRAC 的高 12 位(MSB),R1 中的 DB[27:15] 为低 13 位(LSB)。LSB FRAC 寄存器(R1)映射当 DB[2:0] 设为 001 时,访问片内 LSB FRAC 寄存器(寄存器 R1,见图 26)。保留位所有保留位必须写 0,以保证正常工作。相位调整使能DB28 = 1 启用相位调整;DB28 = 0 关闭。13 位 LSB 小数值(FRAC)DB[27:15] 与 RO 寄存器中的 DB[14:3] 共同组成 25 位 FRAC 值。DB[27:15] 为 FRAC 的低 13 位(LSB),RO 中的 DB[14:3] 为高 12 位(MSB)。12 位相位值DB[14:3] 定义相位字,用于在 RF 输出端引入相对相移。写寄存器 RO 后生效。相移量 = (相位值 × 360°) / 2¹²示例:相位值 = 512 时,相移 = 45°。如有型号采购及选型需求,可直接联系兆亿微波电子元件商城。
  • 点击次数: 1
    2025-12-05
    HMC600LP4(E)对数探测器/控制器其将输入端的RF信号转换为输出端的成比例的DC电压。HMC600LP4(E)采用连续压缩拓扑结构,在宽输入频率范围内提供极高的动态范围和转换精度。随着输入功率的增加,连续放大器逐一进入饱和状态,从而精确地近似对数函数。一系列平方律检测器的输出被求和,转换为电压域并缓冲以驱动LOGOUT输出。对于检测模式,LOGOUT引脚与VSET输入端短路,将提供19mV/dB的标称对数斜率和-95 dBm的截距。HMC600LP4(E)也可用于控制器模式,在该模式下,外部电压被施加到VSET引脚,以创建AGC或APC反馈回路。特征宽动态范围:高达75 dB灵活的电源电压:+2.7V至+5.5V掉电模式温度稳定性极佳紧凑型4x4mm无引线SMT封装应用HMC600LP4/HMC600LP4E是以下中频和射频应用的理想选择:•蜂窝/PCS/3G•WiMAX、WiBro和固定无线•电源监控电路•接收机信号强度指示(RSSI)•自动增益和功率控制如有型号采购及选型需求,可直接联系兆亿微波电子元件商城。
  • 点击次数: 2
    2025-12-05
    AD8001电流反馈型放大器布局需要注意以下问题:要想让 AD8001 达到规格书所标榜的高速性能,必须仔细设计印制板布局并慎重选型。必须采用低寄生参数元件,并遵循射频/高速电路设计规范。接地层:PCB 元件面的所有空余区域应铺整块接地层,以提供低阻抗回路。输入引脚附近要将接地层挖空,减小杂散电容。电源去耦:一律使用贴片瓷片电容(见图 13)。电容一端接接地层,另一端距每个电源引脚不超过 1/8 英寸(≈3 mm)。大容量储能:再并联一只 4.7 µF–10 µF 的钽电解,用来在输出快速、大信号跳变时提供瞬态电流,距离可稍远。反馈电阻:尽量靠近反相输入引脚,使该节点杂散电容降到最小。反相端电容变化 长线传输:若信号走线长度 1 英寸(≈25 mm),应采用微带线或带状线设计,特征阻抗取 50 Ω 或 75 Ω,并在两端做好终端匹配。如有型号采购及选型需求,可直接联系兆亿微波电子元器件商城。
热门分类
关于我们

───  公众号二维码  ───

兆亿微波商城微信公众号

兆亿微波商城www.rfz1.com是一个家一站式电子元器件采购平台,致力于为广大客户提供高质量、高性能的电子元器件产品。产品覆盖功放器件、射频开关、滤波器、混频器、功分器、耦合器、衰减器、电源芯片、电路板及射频电缆等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为客户提供一站式供应链采购服务。 

  • 品质 • 正品行货 购物无忧
  • 低价 • 普惠实价 帮您省钱
  • 速达 • 专业配送 按时按需
Copyright ©2020 - 2021 兆亿微波科技有限公司
X
1

QQ设置

    1
3

SKYPE 设置

4

阿里旺旺设置

5

电话号码管理

电话 电话 电话
010-62975458
    1
6

二维码管理

    1
返回顶部
展开