嗨,欢迎来到兆亿微波官方商城!
服务热线: 010-62975458  17600099251
购物车图片 购物车 ( )
全部商品分类

直击增益范围:利用仪表放大器获得多个增益范围

2021/3/11 14:43:57
浏览次数: 3

  问题:


  我有一个仪表放大器,但我需要更宽的动态范围,而不是单一增益。我可以通过多路复用增益电阻来获得可编程增益吗?

直击增益范围:利用仪表放大器获得多个增益范围

  答案:


  为了实现高精度传感器测量动态范围的最大化,可能需要使用可编程增益仪表放大器(PGIA)。由于大多数仪表放大器使用外部增益电阻(RG)来设置增益,似乎通过一组多路复用增益电阻就可以实现所需的可编程增益。虽然这是可能的,但在以这种方式将固态多路复用器施加于系统之前需要考虑三个主要问题:电源与信号电压的限制、开关电容和导通电阻。

  

直击增益范围:利用仪表放大器获得多个增益范围

  图1. AD8421 PGIA带有多路复用器。


  保持在信号电压范围内


  固态CMOS开关需电源供电。源电压或漏极电压超过电源电压时,故障电流流过,会导致输出不正确。每个电阻RG引脚的电压通常处于二极管相应输入端的压降范围内;因此,该开关的信号电压范围须大于仪表放大器的输入范围。


  考虑电容


  该开关电容类似于将电容悬于其中一个RG引脚上,并保持另一个RG引脚不变。足够大的电容可能导致峰化或不稳定,但更容易被忽视的问题是对共模抑制比的影响。在电路板布局中,接地层一般从RG引脚下方移除,因为小于1 pF的电容不平衡会大大降低AC CMRR。开关电容可为几十pF,会导致较大误差。以具有完美CMRR的仪表放大器为简单示例,不存在RG,仅在一个RG引脚上存在电容,由电容引起的CMRR的估算如下:


  直击增益范围:利用仪表放大器获得多个增益范围


  例如,如果内部反馈电阻RF = 25 kΩ,CRG = 10 pF,则10 kHz时的CMRR仅为36 dB。这表明需要使用低电容开关或平衡开关架构,如图2所示的SPST开关。


  关于阻抗


  最后,根据仪表放大器的增益公式,开关的导通电阻直接影响增益。如果导通电阻足够低,以至于仍能实现所需增益,这或许可行。然而,此开关的导通电阻随漏极电压发生变化(指定为RFLAT(ON))。开关电阻的变化使增益既依赖于共模电压,又会产生非线性效应。例如,使用1 kΩ的RG和具有10 Ω RFLAT(ON)的开关,在共模范围内会引起1%的增益不确定性。一部分将转化为差分信号(即2 Ω变化将会引起2000 ppm的非线性度)。这表明需要使用低导通电阻开关,与上述建议的低电容开关截然相反,因为大尺寸晶体管器件尺寸可实现低导通电阻,而小尺寸晶体管可实现低电容。 ADG5412F 故障保护四通道SPST开关在许多情况下提供了很好的解决方案。这些故障保护开关的架构能够提供10 Ω的导通电阻,在整个信号范围内,导通电阻曲线非常平坦,并且关断电容仅为12 pF。


  直击增益范围:利用仪表放大器获得多个增益范围


  图2. 采用ADG5412F四通道SPST和AD8421的平衡式PGIA。


  了解替代方案


  如果这些电路仍不能满足设计要求,还可以采用其他方法来实现仪表放大器的可编程增益功能。强烈建议选择集成式PGIA(如果有合适的)。集成式PGIA旨在实现高性能、更小的尺寸,比分立解决方案的寄生效应更少,并且规格包含内部开关效应。AD8231, AD8250/AD8251/AD8253, 以及 LTC6915便是集成式PGIA很好的例子。此外,还有一些更高集成度的解决方案包含此功能,如 AD7124-8 和ADAS3022.


  结论


  仪表放大器是在芯片级尽可能保持平衡的高精度元件,以实现共模抑制。使用固态开关的确有可能构建可编程增益仪表放大器,但是这种方式也非常容易使仪表放大器失去其特有的平衡,同时降低电路精度。为了进行必要的取舍,需要考虑开关的非理想效应。平衡开关架构和现代开关(如ADG5412F)是优化这些设计的利器。建议使用集成式PGIA,因为它们已经在规格中考虑了开关效应。


在线留言询价
推荐阅读
  • 点击次数: 1
    2025-12-05
    Qorvo的TGA2594-HM是基于Qorvo 0.15um GaN-on-SiC工艺制造的封装功率放大器。TGA2594-HM的工作频率为27至31 GHz,饱和输出功率为36.5 dBm,功率附加效率为25%,小信号增益为25 dB。TGA2594-HM采用密封的22引线7x7 mm陶瓷QFN,设计用于印刷电路板的表面安装。该封装采用铜基,提供卓越的热管理。TGA2594-HM非常适合支持商业和军事应用。两个射频端口都集成了隔直电容,完全匹配50欧姆。无铅,符合RoHS标准。特征•频率范围:27-31GHz•磅:PIN=14 dBm时为36.5 dBm•PAE:25%连续波•小信号增益:25 dB•IM3:-35 dBc@25 dBm磅/音•偏压:VD=20 V,IDQ=140 mA,VG=-3 V(典型值)•包装尺寸:7 x 7 x 1.3毫米应用•军用卫星通信终端•商用卫星通信终端•点对点数字广播•点对多点数字广播引脚配置图如有型号采购及选型需求,可直接联系兆亿微波电子元件商城。
  • 点击次数: 1
    2025-12-05
    AD9963是引脚兼容的12位低功耗MxFE®转换器,提供两个采样速率为100 MSPS的ADC通道和两个采样速率为170 MSPS的DAC通道。这些转换器针对要求低功耗和低成本的通信系统的发射和接收信号路径进行了优化。数字接口提供灵活的时钟选项。发射路径可配置为1×、2×、4×和8×插值。接收路径具有一个可旁路的2×抽取低通滤波器。引脚配置图特征• 双通道10位/12位、100 MSPS ADCSNR = 67 dB, fIN = 30.1 MHz• 双通道10位/12位、170 MSPS DACACLR = 74 dBc• 5 个辅助模拟输入/输出通道• 低功耗:• 支持全双工和半双工数据接口• 72引脚、无铅小型LFCSP封装应用无线基础设施微微蜂窝基站医疗器械超声AFE便携式仪表信号发生器、信号分析仪如有型号采购及选型需求,可直接联系兆亿微波电子元件商城。
  • 点击次数: 0
    2025-12-05
    FRAC/INT 寄存器(RO)映射当 DB[2:0] 设为 000 时,访问片内 FRAC/INT 寄存器(寄存器 RO,见图 25)。RamponDB31 = 1 启用斜坡功能;DB31 = 0 关闭斜坡功能。MUXout Control片内多路复用器由 DB[30:27] 控制,真值表见图 25。12 位整数值(INT)DB[26:15] 设置 INT 值,该值是反馈分频系数的一部分。12 位 MSB 小数值(FRAC)DB[14:3] 与 LSB FRAC 寄存器(R1)中的 DB[27:15] 共同组成 25 位 FRAC 值,送入小数插值器。DB[14:3] 为 FRAC 的高 12 位(MSB),R1 中的 DB[27:15] 为低 13 位(LSB)。LSB FRAC 寄存器(R1)映射当 DB[2:0] 设为 001 时,访问片内 LSB FRAC 寄存器(寄存器 R1,见图 26)。保留位所有保留位必须写 0,以保证正常工作。相位调整使能DB28 = 1 启用相位调整;DB28 = 0 关闭。13 位 LSB 小数值(FRAC)DB[27:15] 与 RO 寄存器中的 DB[14:3] 共同组成 25 位 FRAC 值。DB[27:15] 为 FRAC 的低 13 位(LSB),RO 中的 DB[14:3] 为高 12 位(MSB)。12 位相位值DB[14:3] 定义相位字,用于在 RF 输出端引入相对相移。写寄存器 RO 后生效。相移量 = (相位值 × 360°) / 2¹²示例:相位值 = 512 时,相移 = 45°。如有型号采购及选型需求,可直接联系兆亿微波电子元件商城。
  • 点击次数: 1
    2025-12-05
    HMC600LP4(E)对数探测器/控制器其将输入端的RF信号转换为输出端的成比例的DC电压。HMC600LP4(E)采用连续压缩拓扑结构,在宽输入频率范围内提供极高的动态范围和转换精度。随着输入功率的增加,连续放大器逐一进入饱和状态,从而精确地近似对数函数。一系列平方律检测器的输出被求和,转换为电压域并缓冲以驱动LOGOUT输出。对于检测模式,LOGOUT引脚与VSET输入端短路,将提供19mV/dB的标称对数斜率和-95 dBm的截距。HMC600LP4(E)也可用于控制器模式,在该模式下,外部电压被施加到VSET引脚,以创建AGC或APC反馈回路。特征宽动态范围:高达75 dB灵活的电源电压:+2.7V至+5.5V掉电模式温度稳定性极佳紧凑型4x4mm无引线SMT封装应用HMC600LP4/HMC600LP4E是以下中频和射频应用的理想选择:•蜂窝/PCS/3G•WiMAX、WiBro和固定无线•电源监控电路•接收机信号强度指示(RSSI)•自动增益和功率控制如有型号采购及选型需求,可直接联系兆亿微波电子元件商城。
  • 点击次数: 2
    2025-12-05
    AD8001电流反馈型放大器布局需要注意以下问题:要想让 AD8001 达到规格书所标榜的高速性能,必须仔细设计印制板布局并慎重选型。必须采用低寄生参数元件,并遵循射频/高速电路设计规范。接地层:PCB 元件面的所有空余区域应铺整块接地层,以提供低阻抗回路。输入引脚附近要将接地层挖空,减小杂散电容。电源去耦:一律使用贴片瓷片电容(见图 13)。电容一端接接地层,另一端距每个电源引脚不超过 1/8 英寸(≈3 mm)。大容量储能:再并联一只 4.7 µF–10 µF 的钽电解,用来在输出快速、大信号跳变时提供瞬态电流,距离可稍远。反馈电阻:尽量靠近反相输入引脚,使该节点杂散电容降到最小。反相端电容变化 长线传输:若信号走线长度 1 英寸(≈25 mm),应采用微带线或带状线设计,特征阻抗取 50 Ω 或 75 Ω,并在两端做好终端匹配。如有型号采购及选型需求,可直接联系兆亿微波电子元器件商城。
热门分类
关于我们

───  公众号二维码  ───

兆亿微波商城微信公众号

兆亿微波商城www.rfz1.com是一个家一站式电子元器件采购平台,致力于为广大客户提供高质量、高性能的电子元器件产品。产品覆盖功放器件、射频开关、滤波器、混频器、功分器、耦合器、衰减器、电源芯片、电路板及射频电缆等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为客户提供一站式供应链采购服务。 

  • 品质 • 正品行货 购物无忧
  • 低价 • 普惠实价 帮您省钱
  • 速达 • 专业配送 按时按需
Copyright ©2020 - 2021 兆亿微波科技有限公司
X
1

QQ设置

    1
3

SKYPE 设置

4

阿里旺旺设置

5

电话号码管理

电话 电话 电话
010-62975458
    1
6

二维码管理

    1
返回顶部
展开