嗨,欢迎来到兆亿微波官方商城!
服务热线: 010-62975458  17600099251
购物车图片 购物车 ( )
全部商品分类

加快部署5G基站的最佳实践:RF前端大规模MIMO入门

2021/10/27 9:35:46
浏览次数: 5

    Strategy Analytics 预测新兴 5G 网络将呈现爆炸式增长。他们预测,2018 年至 2024 年间部署的新基站数量将会翻一番。在 5G 网络快速增长的推动下,到 2024 年,部署的新基站和升级的无线基站设备数量将达到近 940 万。


    这些 5G 基站中,许多都将采用大规模 MIMO 天线。由于采用大规模 MIMO 天线,这些新 5G 网络架构推动蜂窝网络外缘能够始终相连。在本文中,我们将介绍与大规模 MIMO 基站中的 RF 前端相关的所有基础知识。


    大规模 MIMO 的定义


    大规模 MIMO 使用多个基站天线与多位用户通信,在相控阵自适应技术中采用了波束成型技术。大规模 MIMO 在不加剧小区间协调的设计复杂性的情况下提高容量。通过使用大规模 MIMO,可以形成波束,确保几乎在任何时候,单个波束只会支持一位用户。因此,为每位用户提供无干扰、高容量的基站连接。


    大规模 MIMO 技术采用大型天线阵列(一般由 16、32 或 64 个阵列组件组成)来实现空间复用(参见下图)。空间复用在相同的资源模块中提供多个并行的数据流。通过扩展虚拟信道的总数,它可以在不额外增加塔站和频谱的情况下提升容量和数据速率。


    回顾该系列其他博文讲述的内容:


    ●    小基站博文第 1 部分


    ●    小基站博文第 2 部分


    ●    载波网络将如何实现 5G


    ●    设计固定无线接入系统时需要考虑的 5 个因素


   加快部署5G基站的最佳实践:RF前端大规模MIMO入门


    图 1.大规模 MIMO 的优势


    大规模 MIMO 5G 和 NR 标准


    5G 新无线电 (NR) 规范第一阶段发布的 3GPP 版本 15 已于 2018 年 6 月发布。规范重点说明使用 5G NR 非独立 (NSA) 和独立 (SA) 标准的移动部署。NSA 是运营商转向 SA 的过渡步骤(参见图 2)。NSA 利用 LTE 锚频段进行控制,并使用 5G NR 频段提供更快的数据速率。NSA 让运营商无需构建新的 5G 核心网络,可以直接提供 5G 数据速率。因为我们尚处于 5G NR 设计的开始阶段,所以大多数基站应用都是 NSA。但随着 5G 不断演进,采用 SA 类型系统部署之后,这种情况将会改变。


加快部署5G基站的最佳实践:RF前端大规模MIMO入门


    图 2.迈向独立 5G 之路。


    适用于大规模 MIMO 系统的 5G 频段


    基站组件供应商和制造商面临着一项重大挑战,即提供各区域所需的最小存货单位 (SKU) 数量。这些在更高频率范围内碎片化的频段组合迫使供应商和制造商提供多样化的产品组合(参见下图)。此外,频率和带宽需求的增加又进一步加大了 RF 半导体技术提供商的设计难度。例如,功率放大器 (PA) 的增益和效率相互关联,发射路径中目前采用的硅 LDMOS 功率技术会对其有影响。因此,系统制造商开始从硅 LDMOS 转而采用氮化镓 (GaN),后者在平均工作功率水平和宽带宽下可实现高达 60% 的效率,因此非常适合大规模 MIMO 基站系统。


 加快部署5G基站的最佳实践:RF前端大规模MIMO入门


加快部署5G基站的最佳实践:RF前端大规模MIMO入门


    探索大规模 MIMO 系统的 RF 前端(半导体技术视角与制造商视角)


    那么,5G 大规模 MIMO 基站系统需要什么样的 RF 前端 (RFFE) 组件呢?高线性、高效率、低功耗的集成前端组件。为了从规范的角度进行分析,制造商希望半导体供应商能优化以下参数,以满足其系统要求。


    制造商要求半导体提供商满足的关键 RF 前端规范


    ●    高邻道功率比 (ACPR),也称为邻道泄漏比 (ACLR)


    ○ ACPR 是指分配通道上的发射器功率与相邻无线电通道上的泄漏功率之比。发射器的 ACPR 主要取决于 PA 的性能。PA 的线性度越高,ACPR 越好,这是因为产生的失真会更少。


    ●    高功率附加效率 (PAE)


    ○ 这个衡量功率放大器效率的指标考虑了放大器增益的影响。最好选择 PAE 值较高的放大器,这是因为其散热器尺寸更小或者未配备散热器,所以产生的热量少,可靠性更高,重量更轻,可以实现更高的整体性能。


    ●    低噪声系数 (NF)


    ○ 低噪声放大器 (LNA) 是 Rx 配置中的第一个有源级,其噪声系数对无线电接收灵敏度有直接影响。因此,RF 半导体供应商总是试图实现较低的 NF,因为这是无线电设计中最关键的规格参数之一。


    ○ 噪声系数以 dB 为单位,是 Rx (SNRi) 输入的信噪比与 Rx (SNRo) 输出的信噪比之间的比值。


    ●    低功耗


    ○ 低功耗设备一直是系统应用的不错选择。它们可减少发热,降低系统的运行成本和额外的硬件成本(例如散热器)。鉴于大规模 MIMO 在单个无线电中有更多数量级的天线,所以降低功耗至关重要。


    ●    高通道隔离


    ○ 隔离是为了防止信号在电路中不必要的节点上出现。更高的隔离性意味着更少的干扰和更清晰的交流。隔离度就是衡量两个通道端口之间的损耗:发射器与发射器端口之间,或者发射器与接收器端口之间。隔离度越高,信号越清晰。


    ○ 采用 5G 大规模 MIMO 架构之后,通道隔离忽然之间成为衡量单个无线电系统中多个天线链之间接近程度的重要参数。虽然 TDD 操作降低了 Tx-Rx 之间的隔离要求,但仍然需要进行 Tx-Tx 和 Rx-Rx 隔离。随着更多的小信号内容被集成到单个芯片封装中,并在同一封装中设置多条 Rx 前端路径,隔离合规性只能通过创新的半导体电路设计和封装技术来实现。


    半导体供应商必须优化上述参数,这样大规模 MIMO 系统制造商才更容易实现规格要求。下列系统规格与上述 RF 前端半导体参数相关。


    关键的制造商系统规格


    ●    优化应用等效全向辐射功率 (EIRP)


    ○ 给定方向的发射器功率和天线增益与无线电发射器的全向天线相关。


    ○ 对于 6 GHz 以下的 5G 系统,将使用 16、32 或 64 个阵列组件,具体取决于应用所需的 EIRP。由于需要大量的阵列组件,每个组件也需输出功率,因此散热成为一项重大挑战,促使设计寻求可提供最高效率的技术。


    ○ 使用 GaN 和 GaAs 这样的技术有助于减少大规模 MIMO 阵列所需的有源组件数量,同时满足基站 EIRP 系统要求。


    ●    高接收器灵敏度


    ○ 接收灵敏度衡量接收器检测弱信号,并且无差错地处理这些信号的能力。噪声是实现目标灵敏度的最大阻碍因素。因此,使用具备出色噪声系数的组件是接收器系统设计的关键。


    ○ 衡量接收器灵敏度的另一个指标是对接收到的信号解码的误差矢量幅度 (EVM)。要使 EVM 误差最小,只能通过使用低噪声系数和高线性度组件来实现,从而最大限度减少弱化的信号失真


    ●    小外形尺寸


    ○ 大规模 MIMO 系统必须足够轻巧,便于安装在传统基站塔和路灯杆等位置。此外,前端组件必须尽可能靠近辐射天线放置,这一点至关重要。这也促使采用前端集成和高能效半导体技术和封装。


    ●    低功耗


    ○ 为了满足 5G 高数据应用需求,我们将需要更多基础设施(例如宏基站和微基站、数据中心、服务器和小基站)。这意味着会增加网络功耗,因而需要提高系统效率,节省总能耗。最终,运营商能以更低成本实现更大产出。提供具备高输出功率、更高效率和低功耗的解决方案是关键。


    ○ A此外,具备 32 或 64 个通道的大规模 MIMO 系统也可以采用更多散热器。而采用 GaN 等技术可以提高系统的功率附加效率,减少对大型散热器的需求,从而最大限度缩减系统重量和尺寸。


    ●    被动冷却,高度可靠


    ○ 低功耗的另一个好处是可以减少产生的热量,因此需要较少的散热器,进而缩减尺寸和重量。高级天线系统 (AAS) 必须具有高能效和稳固性,以便对所有户外塔顶电子设备进行被动式冷却,这一点非常重要。GaN 让制造商能够在某些应用中使用被动冷却,减少了对风机或空调的需求,并且可以将 RF 前端安装在天线上。


    5G 大规模 MIMO 基站已经开始建设,运营商将会继续扩大部署。全球各地需要不同频率和功率水平的产品,所以供应商需要在多样化的产品组合供应链中进行选择。由于大规模 MIMO 系统对参数的要求很严格,需要更高的频率范围和带宽,所以必须采用新技术。如下表所示,Qorvo 提供目前市场上最丰富的 5G 大规模 MIMO 产品组合。我们也使用最适合各种大规模 MIMO 应用的技术来创造产品。Qorvo 不仅提供覆盖 3.5 GHz 以上所有频率的产品,这些产品还采用 GaN、GaAs 和滤波器体声波技术 (BAW),具备出色性能。


加快部署5G基站的最佳实践:RF前端大规模MIMO入门

    加快部署5G基站的最佳实践:RF前端大规模MIMO入门


    加快部署5G基站的最佳实践:RF前端大规模MIMO入门


    6 GHz 以下的 5G 大规模 MIMO 和毫米波基础设施设计已经投入使用。GaN、GaAs 和 BAW 等技术均有助于运营商和基站 OEM 实现 5G 大规模 MIMO 目标,并将覆盖范围扩展到网络边缘。身为消费者,我们才刚刚见识到大规模 MIMO 和 5G 功能的冰山一角。


    来源:Qorvo


在线留言询价
推荐阅读
  • 点击次数: 0
    2025-12-04
    Bourns近日推出了全新的 5.0SMDJ系列瞬态电压抑制(TVS)二极管。该系列产品采用紧凑的 DO-214AB封装,在节省宝贵PCB空间的同时,为设备提供了ESD防护韧性。系列共包含13款单向与8款双向型号,为设计师应对各类端口保护需求提供了灵活、可靠的解决方案。该系列具备高效能能量吸收与箝位能力,使设计人员可在 12 V 至 30 V 的广泛工作峰值反向电压范围内选择适用型号。5.0SMDJ 系列的峰值脉冲功率可达 5,000 瓦,击穿电压最高可达 36.8 V,典型箝位响应时间在击穿启动后小于 1 奈秒。此外,该系列亦已通过 JEDEC 标准测试。免责声明:本文为转载文章,转载此文目的在于传递更多电子元器件行业信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行删除。
  • 点击次数: 0
    2025-12-04
    意法半导体(ST)宣布对其ST87M01系列NB-IoT无线模块进行重要扩充,同步推出了功能更为强大的开发生态系统。此次升级的核心目的在于显著降低基于窄带蜂窝网络的智能物联网设备的开发门槛与周期,助力开发者高效地将创意转化为成熟应用。新模块及其生态将重点服务于智能物流追踪、精细化环境监控、智慧城市照明与停车管理、工业设备预测性维护、畜牧宠物安全管理、智能安防及远程健康监护等多个前沿领域。ST87M01是一款高性能、完全可编程、超紧凑、低功耗的LTE Cat NB2 NB-IoT工业模块系列,提供全面的全球频段覆盖和安全功能。ST87M01系列旨在满足各种应用需求,提供多种可配置选项,包括GNSS、Wi-Fi定位、嵌入式SIM和无线M-Bus(WBUS)。集成的GNSS功能通过GPS星座实现精确的位置跟踪,而Wi-Fi定位功能则使用附近的802.11b网络与第三方地理编码提供商结合提供快速、低功耗的位置服务。无线M-Bus在蜂窝网络覆盖范围有限的环境中充当可靠的备用通信信道。嵌入式SIM选项优化了电路板空间并降低了BOM的复杂性。ST87M01模块支持多种物联网协议,包括PDU SMS服务和互联网协议,如TCP/IP、TLS/DTLS、CoAP、LwM2M、MQTT和HTTP/HTTPS,可实现多种连接和应用场景。超紧凑的LGA封装(10.6 mm x 12.8 mm,51个引脚)使ST87M01系列成为空间受限设计的理想选择,在不影响性能的情况下促进了设备的小型化。免责声明:本文为转载文章,转载此文目的在于传递更多电子元器件行业信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行删除。
  • 点击次数: 1
    2025-12-04
    大联大控股旗下世平集团,近日正式发布一款高性能汽车12V电池管理系统(BMS)应用方案。该方案深度融合恩智浦(NXP)关键技术,以符合功能安全标准的S32K312微控制器为核心,结合高精度电池监测前端芯片MC33772C,构建了一套从电芯数据精准采集、智能状态估算到多重硬件保护的完整硬件参考设计,旨在助力客户提升低压电池系统的可靠性、效率与使用寿命,加速相关产品开发进程。当前,汽车12V BMS系统面临多重挑战,被动均衡技术因其效率低、速度慢,已成为制约电池组寿命提升的核心瓶颈。同时,在复杂工况与电池老化下,保持高精度的电量状态估算极为困难。此外,系统还需在紧凑空间内解决高压差电池间的均衡散热与电磁干扰问题,并确保数据采集的绝对可靠性,这对硬件设计与系统集成提出了严苛要求。大联大世平基于NXP S32K312 MCU与MC33772C AFE推出的汽车12V BMS应用方案,能实时监控电池电压、电流,精准评估电量状态,助力用户优化能源使用。本方案通过优化充放电过程,提升电池使用效率,减少能量损耗,确保电池组中各单体电池均衡充电,防止个别电池过充或欠充,提升延长整体使用寿命。基于NXP产品的汽车12V BMS应用方案采用的NXP S32K312 MCU是一款32位汽车级微控制器,专为汽车和工业市场设计。它集成了丰富的外设接口和高性能计算能力,非常适合需要高级集成和优化的复杂应用场景。其核心特性包括高集成度、低功耗、高性能以及灵活的内存配置,支持实时操作系统(RTOS)运行,为实时控制应用提供稳定平台。此外,它还提供了丰富的安全功能和加密模块,以保护关键应用和数据安全。为了管理12V电池模块,开发板集成了4路电压与5路温度采集通道(含2路板载、3路外部接口),全面监测电池包状态。其具备硬件充放电过流保护、诊断信息上报、高精度SOC估算及被动均衡等功能,有效保障电池组安全,提升寿...
  • 点击次数: 0
    2025-12-03
    AD4081 是一款高速、低噪声、低失真、20 位 Easy Drive 逐次逼近寄存器(SAR)型模数转换器(ADC)。其在超过 1 MHz 的信号频率下仍能保持高于 90 dBFS 的 SINAD,适用于各种精密、宽带宽数据采集系统。通过过采样与片内数字滤波/降采样,可简化输入抗混叠滤波器设计,在允许稍高延迟的应用中进一步降低噪声与输出数据率。Easy Drive 特性减少信号链复杂度与功耗,提高通道密度,并放宽对周边器件的选型要求。其输入结构几乎不产生与输入信号相关的电荷注入,显著减小 ADC 自身引起的建立误差;连续采样架构在整个转换周期内都允许建立,降低了对驱动放大器的带宽要求。片内集成低漂移基准缓冲器、LDO(为模拟核与数字接口供电)、16 K 采样深度的结果 FIFO,可大幅减轻数字主机的负担;关键的去耦电容也被封装在内部,确保最佳性能、简化 PCB 布局并缩小整体方案尺寸。主要性能采样率:20 MSPS,转换延迟 77.5 nsINL:±4 ppm(典型),±8 ppm(最大)动态范围:94.6 dBFS1 kHz:SNR 94 dB,THD –117.3 dB(典型)1 MHz:SNR 93.7 dB,THD –103.7 dB(典型)噪声谱密度:–164.6 dBFS/Hz20 位分辨率,无丢码低功耗20 MSPS、–0.5 dBFS 正弦输入时典型 68.6 mWEasy Drive 全差分输入6 V p-p 差分输入范围连续信号采集,线性化输入电流 5 μA/MSPS片内集成低漂移基准缓冲与去耦、共模电压 Vcm 生成数字功能与接口16 K 采样深度转换结果 FIFO数字平均滤波器,最高 210 倍降采样SPI 配置,支持多种数据接口:– 单通道 DDR 串行 LVDS,400 Mbps/通道– 双通道 DDR 串行 LVDS,2...
  • 点击次数: 1
    2025-12-02
    圣邦微电子正式推出SGM6000系列同步降压转换器,该器件凭借1.75V至5.5V的宽输入电压范围、低至300nA的超静态电流以及高达700mA的输出电流,为电池供电的便携式与物联网设备提供了兼具高效能与长续航的电源解决方案。其微型化的设计特别适用于对功耗和体积极为敏感的应用场景。详细概述SGM6000系列是一款低压、高效的微型同步降压转换器,具备300nA的超低静态电流。该器件的关断电流典型值为6nA,静态电流为300nA,能进一步延长电池供电应用的使用寿命。它可支持最高700mA的负载范围,峰值效率达96%;同时扩展了高效工作区间,在1.75V至5.5V的输入电压范围内,仍能保持超低静态电流,非常适合电池供电应用,可有效延长设备使用时长。SGM6000采用绿色WLCSP-1.31×0.89-6B封装。特征1.75V 至 5.5V 输入电压范围可编程输出电压SGM6000A:VSET 引脚可选输出电压为 0.7V 至 3.3VSGM6000B:固定 VOUT 电压范围为 0.6V、0.8V、1.2V 和 1.8V300nA 超低静态电源电流6nA 关断电流700mA 输出电流峰值效率高达 96%,10μA 电流时效率超过 88%全温度范围内输出电压精度为 ±2.6%在多种使用情况下保护系统主动放电功能外部元件数量最少采用绿色 WLCSP-1.31×0.89-6B 封装应用便携式、空间受限的消费产品可穿戴电子产品耳机和耳塞超低功耗物联网、窄带物联网和蓝牙单节锂离子 (Li+) 和纽扣电池产品有线或无线工业产品如有型号采购及选型需求,可直接联系兆亿微波电子元器件商城。
热门分类
关于我们

───  公众号二维码  ───

兆亿微波商城微信公众号

兆亿微波商城www.rfz1.com是一个家一站式电子元器件采购平台,致力于为广大客户提供高质量、高性能的电子元器件产品。产品覆盖功放器件、射频开关、滤波器、混频器、功分器、耦合器、衰减器、电源芯片、电路板及射频电缆等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为客户提供一站式供应链采购服务。 

  • 品质 • 正品行货 购物无忧
  • 低价 • 普惠实价 帮您省钱
  • 速达 • 专业配送 按时按需
Copyright ©2020 - 2021 兆亿微波科技有限公司
X
1

QQ设置

    1
3

SKYPE 设置

4

阿里旺旺设置

5

电话号码管理

电话 电话 电话
010-62975458
    1
6

二维码管理

    1
返回顶部
展开